
Judd F Hultquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/681409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viral whole-genome sequencing to assess impact of universal masking on SARS-CoV-2 transmission among pediatric healthcare workers. Infection Control and Hospital Epidemiology, 2022, 43, 1408-1412.	1.8	4
2	Highly sensitive and ultra-rapid antigen-based detection of SARS-CoV-2 using nanomechanical sensor platform. Biosensors and Bioelectronics, 2022, 195, 113647.	10.1	34
3	Serological Markers of SARS-CoV-2 Reinfection. MBio, 2022, 13, e0214121.	4.1	8
4	Has Omicron Changed the Evolution of the Pandemic?. JMIR Public Health and Surveillance, 2022, 8, e35763.	2.6	38
5	Differential Expression of CREM/ICER Isoforms Is Associated with the Spontaneous Control of HIV Infection. MBio, 2022, 13, e0197921.	4.1	3
6	GS-CA1 and lenacapavir stabilize the HIV-1 core and modulate the core interaction with cellular factors. IScience, 2022, 25, 103593.	4.1	20
7	Multiple expansions of globally uncommon SARS-CoV-2 lineages in Nigeria. Nature Communications, 2022, 13, 688.	12.8	23
8	TRIM5α Restriction of HIV-1-N74D Viruses in Lymphocytes Is Caused by a Loss of Cyclophilin A Protection. Viruses, 2022, 14, 363.	3.3	5
9	Assessment of Virological Contributions to COVID-19 Outcomes in a Longitudinal Cohort of Hospitalized Adults. Open Forum Infectious Diseases, 2022, 9, ofac027.	0.9	8
10	FEZ1 phosphorylation regulates HSPA8 localization and interferon-stimulated gene expression. Cell Reports, 2022, 38, 110396.	6.4	3
11	A functional map of HIV-host interactions in primary human T cells. Nature Communications, 2022, 13, 1752.	12.8	27
12	Low-level SARS-CoV-2 viremia coincident with COVID placentitis and stillbirth. Placenta, 2022, 121, 79-81.	1.5	14
13	Longitudinal Analysis of SARS-CoV-2 Vaccine Breakthrough Infections Reveals Limited Infectious Virus Shedding and Restricted Tissue Distribution. Open Forum Infectious Diseases, 2022, 9, .	0.9	36
14	Global post-translational modification profiling of HIV-1-infected cells reveals mechanisms of host cellular pathway remodeling. Cell Reports, 2022, 39, 110690.	6.4	12
15	Overlapping Delta and Omicron Outbreaks During the COVID-19 Pandemic: Dynamic Panel Data Estimates. JMIR Public Health and Surveillance, 2022, 8, e37377.	2.6	2
16	Rapid and Sensitive Detection of Antigen from SARS-CoV-2 Variants of Concern by a Multivalent Minibinder-Functionalized Nanomechanical Sensor. Analytical Chemistry, 2022, 94, 8105-8109.	6.5	6
17	Recognition of HIV-1 capsid by PQBP1 licenses an innate immune sensing of nascent HIV-1 DNA. Molecular Cell, 2022, 82, 2871-2884.e6.	9.7	17
18	Molecular epidemiology in the HIV and SARS-CoV-2 pandemics. Current Opinion in HIV and AIDS, 2021, 16, 11-24.	3.8	5

JUDD F HULTQUIST

#	Article	IF	CITATIONS
19	MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Reports, 2021, 34, 108628.	6.4	287
20	Patterns and persistence of SARS-CoV-2 IgG antibodies in Chicago to monitor COVID-19 exposure. JCI Insight, 2021, 6, .	5.0	24
21	Efficient generation of isogenic primary human myeloid cells using CRISPR-Cas9 ribonucleoproteins. Cell Reports, 2021, 35, 109105.	6.4	29
22	Functional landscape of SARS-CoV-2 cellular restriction. Molecular Cell, 2021, 81, 2656-2668.e8.	9.7	137
23	HIV-1 Nef interacts with the cyclin K/CDK13 complex to antagonize SERINC5 for optimal viral infectivity. Cell Reports, 2021, 36, 109514.	6.4	8
24	Screening Students and Staff for Asymptomatic Coronavirus Disease 2019 in ChicagoÂSchools. Journal of Pediatrics, 2021, 239, 74-80.e1.	1.8	3
25	Restriction factor compendium for influenza A virus reveals a mechanism for evasion of autophagy. Nature Microbiology, 2021, 6, 1319-1333.	13.3	23
26	A clade of SARS-CoV-2 viruses associated with lower viral loads in patient upper airways. EBioMedicine, 2020, 62, 103112.	6.1	77
27	mRNA display with library of even-distribution reveals cellular interactors of influenza virus NS1. Nature Communications, 2020, 11, 2449.	12.8	8
28	Cyclophilin A Prevents HIV-1 Restriction in Lymphocytes by Blocking Human TRIM5α Binding to the Viral Core. Cell Reports, 2020, 30, 3766-3777.e6.	6.4	68
29	A systems approach to infectious disease. Nature Reviews Genetics, 2020, 21, 339-354.	16.3	72
30	516. SARS-CoV-2 Exhibits Clade-specific Differences in Nasopharyngeal Viral Loads. Open Forum Infectious Diseases, 2020, 7, S324-S324.	0.9	0
31	520. Longitudinal Analysis of SARS-CoV-2 Viruses in Hospitalized Adults. Open Forum Infectious Diseases, 2020, 7, S325-S326.	0.9	0
32	Large dataset enables prediction of repair after CRISPR–Cas9 editing in primary T cells. Nature Biotechnology, 2019, 37, 1034-1037.	17.5	87
33	ARIH2 Is a Vif-Dependent Regulator of CUL5-Mediated APOBEC3G Degradation in HIV Infection. Cell Host and Microbe, 2019, 26, 86-99.e7.	11.0	42
34	CRISPR–Cas9 genome engineering of primary CD4+ T cells for the interrogation of HIV–host factor interactions. Nature Protocols, 2019, 14, 1-27.	12.0	98
35	SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Scientific Reports, 2018, 8, 2092.	3.3	12
36	Protein Interaction Mapping Identifies RBBP6 as a Negative Regulator of Ebola Virus Replication. Cell, 2018, 175, 1917-1930.e13.	28.9	108

JUDD F HULTQUIST

#	Article	IF	CITATIONS
37	Influenza virus infection causes global RNAPII termination defects. Nature Structural and Molecular Biology, 2018, 25, 885-893.	8.2	48
38	CRL4 ^{AMBRA1} targets Elongin C for ubiquitination and degradation to modulate CRL5 signaling. EMBO Journal, 2018, 37, .	7.8	13
39	Fab-based inhibitors reveal ubiquitin independent functions for HIV Vif neutralization of APOBEC3 restriction factors. PLoS Pathogens, 2018, 14, e1006830.	4.7	17
40	The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity. Cell, 2017, 169, 679-692.e14.	28.9	48
41	Inhibition of CRISPR-Cas9 with Bacteriophage Proteins. Cell, 2017, 168, 150-158.e10.	28.9	409
42	A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nature Genetics, 2017, 49, 193-203.	21.4	290
43	A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells. Cell Reports, 2016, 17, 1438-1452.	6.4	167
44	Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. Immunity, 2016, 44, 46-58.	14.3	110
45	Lineage-Specific Viral Hijacking of Non-canonical E3ÂUbiquitin Ligase Cofactors in the Evolution of Vif Anti-APOBEC3 Activity. Cell Reports, 2015, 11, 1236-1250.	6.4	42
46	Natural Polymorphisms in Human APOBEC3H and HIV-1 Vif Combine in Primary T Lymphocytes to Affect Viral G-to-A Mutation Levels and Infectivity. PLoS Genetics, 2014, 10, e1004761.	3.5	92
47	APOBEC3F Determinants of HIV-1 Vif Sensitivity. Journal of Virology, 2014, 88, 12923-12927.	3.4	13
48	D316 is critical for the enzymatic activity and HIV-1 restriction potential of human and rhesus APOBEC3B. Virology, 2013, 441, 31-39.	2.4	7
49	Endogenous Origins of HIV-1 G-to-A Hypermutation and Restriction in the Nonpermissive T Cell Line CEM2n. PLoS Pathogens, 2012, 8, e1002800.	4.7	90
50	Vif Proteins of Human and Simian Immunodeficiency Viruses Require Cellular CBFÎ ² To Degrade APOBEC3 Restriction Factors. Journal of Virology, 2012, 86, 2874-2877.	3.4	65
51	The Restriction Factors of Human Immunodeficiency Virus. Journal of Biological Chemistry, 2012, 287, 40875-40883.	3.4	244
52	HIV Type 1 Viral Infectivity Factor and the RUNX Transcription Factors Interact with Core Binding Factor <i>β</i> on Genetically Distinct Surfaces. AIDS Research and Human Retroviruses, 2012, 28, 1543-1551.	1.1	30
53	Vif hijacks CBF-Î ² to degrade APOBEC3G and promote HIV-1 infection. Nature, 2012, 481, 371-375.	27.8	312
54	APOBEC3B and AID Have Similar Nuclear Import Mechanisms. Journal of Molecular Biology, 2012, 419, 301-314.	4.2	79

JUDD F HULTQUIST

#	Article	IF	CITATIONS
55	Human and Rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H Demonstrate a Conserved Capacity To Restrict Vif-Deficient HIV-1. Journal of Virology, 2011, 85, 11220-11234.	3.4	310
56	Long-Term Restriction by APOBEC3F Selects Human Immunodeficiency Virus Type 1 Variants with Restored Vif Function. Journal of Virology, 2010, 84, 10209-10219.	3.4	45
57	Leveraging APOBEC3 proteins to alter the HIV mutation rate and combat AIDS. Future Virology, 2009, 4, 605-619.	1.8	26
58	Feminized tassels of maize mop1 and ts1 mutants exhibit altered levels of miR156 and specific SBP-box genes. Planta, 2008, 229, 99-113.	3.2	85