Liu Yong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6813805/publications.pdf

Version: 2024-02-01

		218677	315739
38	6,463	26	38
papers	citations	h-index	g-index
20	20	20	0706
38	38	38	8796
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 2010, 4, 1321-1326.	14.6	3,658
2	Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. Journal of Hazardous Materials, 2021, 404, 124191.	12.4	351
3	Reduction of nitrate by zero valent iron (ZVI)-based materials: A review. Science of the Total Environment, 2019, 671, 388-403.	8.0	288
4	Peroxymonosulfate Activation by Fe–Co–O-Codoped Graphite Carbon Nitride for Degradation of Sulfamethoxazole. Environmental Science & Environmenta	10.0	273
5	Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole. Journal of Hazardous Materials, 2018, 342, 166-176.	12.4	236
6	Metal hexacyanoferrates-based adsorbents for cesium removal. Coordination Chemistry Reviews, 2018, 374, 430-438.	18.8	191
7	Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution. Journal of Hazardous Materials, 2020, 383, 121126.	12.4	180
8	Magnetic COFs for the adsorptive removal of diclofenac and sulfamethazine from aqueous solution: Adsorption kinetics, isotherms study and DFT calculation. Journal of Hazardous Materials, 2020, 385, 121596.	12.4	126
9	Iron and sulfur co-doped graphite carbon nitride (FeOy/S-g-C3N4) for activating peroxymonosulfate to enhance sulfamethoxazole degradation. Chemical Engineering Journal, 2020, 382, 122836.	12.7	113
10	A critical review of various adsorbents for selective removal of nitrate from water: Structure, performance and mechanism. Chemosphere, 2022, 291, 132728.	8.2	77
11	High-Efficient Generation of H ₂ O ₂ by Aluminum-Graphite Composite through Selective Oxygen Reduction for Degradation of Organic Contaminants. Environmental Science & Environmental Science & Technology, 2020, 54, 14085-14095.	10.0	76
12	Adsorptive removal of fluoride from aqueous solutions using Al-humic acid-La aerogel composites. Chemical Engineering Journal, 2016, 306, 174-185.	12.7	71
13	Mechanistic insight into the adsorption of diclofenac by MIL-100: Experiments and theoretical calculations. Environmental Pollution, 2019, 253, 616-624.	7. 5	68
14	Selective and effective adsorption of Hg(II) from aqueous solution over wide pH range by thiol functionalized magnetic carbon nanotubes. Chemosphere, 2019, 226, 405-412.	8. 2	65
15	Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation. Chemical Engineering Journal, 2019, 359, 1195-1204.	12.7	62
16	Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: Batch experiments and DFT calculations. Chemosphere, 2020, 246, 125778.	8. 2	58
17	In situ generation of H2O2 using MWCNT-Al/O2 system and possible application for glyphosate degradation. Science of the Total Environment, 2019, 650, 2567-2576.	8.0	53
18	Activation of peroxydisulfate by a novel Cu0-Cu2O@CNTs composite for 2, 4-dichlorophenol degradation. Science of the Total Environment, 2021, 754, 141883.	8.0	46

#	Article	IF	Citations
19	Zn0-CNTs-Fe3O4 catalytic in situ generation of H2O2 for heterogeneous Fenton degradation of 4-chlorophenol. Chemosphere, 2018, 208, 665-673.	8.2	43
20	Fenton-like degradation of sulfamethoxazole in Cu0/Zn0-air system over a broad pH range: Performance, kinetics and mechanism. Chemical Engineering Journal, 2021, 403, 126320.	12.7	42
21	Novel Fenton-like system (Mg/Fe-O2) for degradation of 4-chlorophenol. Environmental Pollution, 2019, 250, 906-913.	7.5	41
22	Catalytic activation of O2 by AlO-CNTs-Cu2O composite for Fenton-like degradation of sulfamerazine antibiotic at wide pH range. Journal of Hazardous Materials, 2020, 396, 122751.	12.4	38
23	N-doped aluminum-graphite (Al-Gr-N) composite for enhancing in-situ production and activation of hydrogen peroxide to treat landfill leachate. Applied Catalysis B: Environmental, 2021, 297, 120407.	20.2	36
24	Stepwise adsorption-oxidation removal of oxytetracycline by Zn0-CNTs-Fe3O4 from aqueous solution. Chemical Engineering Journal, 2019, 375, 121963.	12.7	35
25	Duckweed derived nitrogen self-doped porous carbon materials as cost-effective electrocatalysts for oxygen reduction reaction in microbial fuel cells. International Journal of Hydrogen Energy, 2020, 45, 15336-15345.	7.1	33
26	In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system. Journal of Power Sources, 2018, 378, 190-197.	7.8	27
27	Enhanced degradation and mineralization of 4-chloro-3-methyl phenol by Zn-CNTs/O3 system. Chemosphere, 2018, 191, 54-63.	8.2	26
28	A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient fenton-like catalyst for degradation of sulfonamides. Chemosphere, 2021, 277, 130305.	8.2	23
29	Tubular nitrogen-doped carbon materials derived from green foxtail as a metal-free electrocatalyst in microbial fuel cells for efficient electron generation. Bioelectrochemistry, 2019, 127, 104-112.	4.6	20
30	Enhanced hydrogen generation from Al-water reaction mediated by metal salts. International Journal of Hydrogen Energy, 2021, 46, 3453-3463.	7.1	19
31	Advanced treatment of landfill leachate using integrated coagulation/ photo-Fenton process through in-situ generated nascent Al3+ and H2O2 by Cl, N co-doped aluminum-graphite composite. Applied Catalysis B: Environmental, 2022, 304, 121003.	20.2	18
32	Fenton degradation of 4-chlorophenol using H ₂ O ₂ in situ generated by Zn-CNTs/O ₂ system. RSC Advances, 2017, 7, 49985-49994.	3.6	16
33	Photoinduced reduction of high concentration Hg(II) to Hg2Cl2 from acid wastewater with the presence of fulvic acid under anaerobic conditions. Chemosphere, 2018, 198, 13-20.	8.2	11
34	Selective reduction of NO3â^'-N from wastewater to N2 by Zn/Ag bimetallic particles combined with wet ammonia oxidation process. Separation and Purification Technology, 2018, 197, 325-335.	7.9	11
35	Efficient <i>in situ</i> generation of H ₂ O ₂ by novel magnesium–carbon nanotube composites. RSC Advances, 2018, 8, 35179-35186.	3.6	11
36	Removal of Hg(II) from aqueous solution using sodium humate as heavy metal capturing agent. Water Science and Technology, 2016, 74, 2946-2957.	2.5	10

#	Article	lF	CITATIONS
37	Degradation of sulfamerazine by a novel CuxO@C composite derived from Cu-MOFs under air aeration. Chemosphere, 2021, 280, 130678.	8.2	8
38	Effective and selective conversion of nitrate from aqueous solutions to nitrogen gas under neutral pH condition using Al/Cu bimetal-sulfamic acid reduction method. Separation and Purification Technology, 2022, 287, 120618.	7.9	3