Brian F Pfleger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6813432/publications.pdf

Version: 2024-02-01

92 papers 5,865 citations

38 h-index 79698 73 g-index

101 all docs

 $\begin{array}{c} 101 \\ \\ \text{docs citations} \end{array}$

101 times ranked

6108 citing authors

#	Article	IF	CITATIONS
1	Introduction of NADH-dependent nitrate assimilation in Synechococcus sp. PCC 7002 improves photosynthetic production of 2-methyl-1-butanol and isobutanol. Metabolic Engineering, 2022, 69, 87-97.	7.0	14
2	EnZymClass: Substrate specificity prediction tool of plant acyl-ACP thioesterases based on ensemble learning. Current Research in Biotechnology, 2022, 4, 1-9.	3.7	7
3	Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity. Nature Communications, 2022, 13, 1619.	12.8	8
4	Comparative functional genomics identifies an iron-limited bottleneck in a Saccharomyces cerevisiae strain with a cytosolic-localized isobutanol pathway. Synthetic and Systems Biotechnology, 2022, 7, 738-749.	3.7	4
5	Renewable linear alpha-olefins by base-catalyzed dehydration of biologically-derived fatty alcohols. Green Chemistry, 2021, 23, 4338-4354.	9.0	9
6	Infrastructures for Phosphorus Recovery from Livestock Waste Using Cyanobacteria: Transportation, Techno-Economic, and Policy Implications. ACS Sustainable Chemistry and Engineering, 2021, 9, 11416-11426.	6.7	4
7	Stepwise genetic engineering of Pseudomonas putida enables robust heterologous production of prodigiosin and glidobactin A. Metabolic Engineering, 2021, 67, 112-124.	7. 0	16
8	Optimization of a T7-RNA polymerase system in Synechococcus sp. PCC 7002 mirrors the protein overproduction phenotype from E. coli BL21(DE3). Applied Microbiology and Biotechnology, 2021, 105, 1147-1158.	3.6	8
9	Machine learning-guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production. Nature Communications, 2021, 12, 5825.	12.8	50
10	Structural and Biosynthetic Analysis of the Fabrubactins, Unusual Siderophores from <i>Agrobacterium fabrum </i> Strain C58. ACS Chemical Biology, 2021, 16, 125-135.	3 . 4	4
11	Accelerating strain phenotyping with desorption electrospray ionization-imaging mass spectrometry and untargeted analysis of intact microbial colonies. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
12	Enabling commercial success of industrial biotechnology. Science, 2021, 374, 1563-1565.	12.6	10
13	Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering, 2020, 58, 35-46.	7.0	80
14	Rewiring yeast metabolism to synthesize products beyond ethanol. Current Opinion in Chemical Biology, 2020, 59, 182-192.	6.1	25
15	Production of 1-octanol in Escherichia coli by a high flux thioesterase route. Metabolic Engineering, 2020, 61, 352-359.	7.0	22
16	Genome-Wide Analysis of RNA Decay in the Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002. MSystems, 2020, 5, .	3.8	6
17	IPRO+/â^': Computational Protein Design Tool Allowing for Insertions and Deletions. Structure, 2020, 28, 1344-1357.e4.	3. 3	8
18	Model-driven analysis of mutant fitness experiments improves genome-scale metabolic models of Zymomonas mobilis ZM4. PLoS Computational Biology, 2020, 16, e1008137.	3.2	12

#	Article	IF	Citations
19	Metabolic engineering of \hat{l}^2 -oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone. Metabolic Engineering, 2020, 61, 335-343.	7.0	24
20	Enhancing Photosynthetic Production of Glycogen-Rich Biomass for Use as a Fermentation Feedstock. Frontiers in Energy Research, 2020, 8, .	2.3	9
21	Directed Evolution Reveals the Functional Sequence Space of an Adenylation Domain Specificity Code. ACS Chemical Biology, 2019, 14, 2044-2054.	3.4	16
22	Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 2019, 17, 725-741.	28.6	324
23	Growth-coupled bioconversion of levulinic acid to butanone. Metabolic Engineering, 2019, 55, 92-101.	7.0	16
24	Leveraging synthetic biology for producing bioactive polyketides and non-ribosomal peptides in bacterial heterologous hosts. MedChemComm, 2019, 10, 668-681.	3.4	13
25	Distinct and redundant functions of three homologs of RNase III in the cyanobacterium Synechococcus sp. strain PCC 7002. Nucleic Acids Research, 2018, 46, 1984-1997.	14.5	9
26	High-CO ₂ Requirement as a Mechanism for the Containment of Genetically Modified Cyanobacteria. ACS Synthetic Biology, 2018, 7, 384-391.	3.8	26
27	Genetic tools for reliable gene expression and recombineering in <i>Pseudomonas putida</i> Journal of Industrial Microbiology and Biotechnology, 2018, 45, 517-527.	3.0	108
28	Light-optimized growth of cyanobacterial cultures: Growth phases and productivity of biomass and secreted molecules in light-limited batch growth. Metabolic Engineering, 2018, 47, 230-242.	7.0	43
29	Inhibition of Cyanobacterial Growth on a Municipal Wastewater Sidestream Is Impacted by Temperature. MSphere, 2018, 3, .	2.9	13
30	Anaerobic production of medium-chain fatty alcohols via a \hat{l}^2 -reduction pathway. Metabolic Engineering, 2018, 48, 63-71.	7.0	53
31	Highly Active C ₈ -Acyl-ACP Thioesterase Variant Isolated by a Synthetic Selection Strategy. ACS Synthetic Biology, 2018, 7, 2205-2215.	3.8	60
32	Regulatory Tools for Controlling Gene Expression in Cyanobacteria. Advances in Experimental Medicine and Biology, 2018, 1080, 281-315.	1.6	26
33	Directed Evolution of an Adenylation Domain Specificity Code. FASEB Journal, 2018, 32, 530.6.	0.5	0
34	Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids. ACS Catalysis, 2017, 7, 3837-3849.	11,2	77
35	RNA Sequencing Identifies New RNase III Cleavage Sites in <i>Escherichia coli</i> and Reveals Increased Regulation of mRNA. MBio, 2017, 8, .	4.1	56
36	Editorial overview: Energy biotechnology. Current Opinion in Biotechnology, 2017, 45, v-viii.	6.6	0

#	Article	IF	CITATIONS
37	Reassessing Escherichia coli as a cell factory for biofuel production. Current Opinion in Biotechnology, 2017, 45, 92-103.	6.6	53
38	Engineering photosynthetic production of L-lysine. Metabolic Engineering, 2017, 44, 273-283.	7.0	36
39	Transcription control engineering and applications in synthetic biology. Synthetic and Systems Biotechnology, 2017, 2, 176-191.	3.7	70
40	A metabolic pathway for catabolizing levulinic acid in bacteria. Nature Microbiology, 2017, 2, 1624-1634.	13.3	86
41	Genome sequence and analysis of Escherichia coli production strain LS5218. Metabolic Engineering Communications, 2017, 5, 78-83.	3.6	9
42	Flux balance analysis indicates that methane is the lowest cost feedstock for microbial cell factories. Metabolic Engineering Communications, 2017, 5, 26-33.	3.6	31
43	Functional genomics analysis of free fatty acid production under continuous phosphate limiting conditions. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 759-772.	3.0	5
44	Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria., 2017, , 1-24.		0
45	Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria., 2017,, 435-458.		0
46	Production of Fatty Acids and Derivatives by Metabolic Engineering of Bacteria., 2016, , 1-24.		2
47	CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metabolic Engineering, 2016, 38, 170-179.	7.0	160
48	A roadmap for the synthesis of separation networks for the recovery of bio-based chemicals: Matching biological and process feasibility. Biotechnology Advances, 2016, 34, 1362-1383.	11.7	43
49	Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium <i>Synechococcus</i> sp. strain PCC 7002. Biotechnology and Bioengineering, 2016, 113, 424-432.	3.3	73
50	Microbes paired for biological gas-to-liquids (Bio-GTL) process. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3717-3719.	7.1	11
51	A transcription activator–like effector (TALE) induction system mediated by proteolysis. Nature Chemical Biology, 2016, 12, 254-260.	8.0	30
52	Solventâ€Enabled Nonenyzmatic Sugar Production from Biomass for Chemical and Biological Upgrading. ChemSusChem, 2015, 8, 1317-1322.	6.8	30
53	Metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering, 2015, 29, 1-11.	7.0	152
54	Genetic and genomic analysis of RNases in model cyanobacteria. Photosynthesis Research, 2015, 126, 171-183.	2.9	23

#	Article	IF	CITATIONS
55	Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology Advances, 2015, 33, 1395-1402.	11.7	195
56	Efflux systems in bacteria and their metabolic engineering applications. Applied Microbiology and Biotechnology, 2015, 99, 9381-9393.	3.6	85
57	Biological synthesis unbounded?. Nature Biotechnology, 2015, 33, 1148-1149.	17.5	10
58	Synthetic Biology Toolbox for Controlling Gene Expression in the Cyanobacterium <i>Synechococcus</i> sp. strain PCC 7002. ACS Synthetic Biology, 2015, 4, 595-603.	3.8	176
59	A Desaturase Gene Involved in the Formation of 1,14-Nonadecadiene in Synechococcus sp. Strain PCC 7002. Applied and Environmental Microbiology, 2014, 80, 6073-6079.	3.1	18
60	Editorial: Biochemical and molecular engineering. Biotechnology Journal, 2014, 9, 587-588.	3.5	0
61	Application of TALEs, CRISPR/Cas and sRNAs as trans-acting regulators in prokaryotes. Current Opinion in Biotechnology, 2014, 29, 46-54.	6.6	31
62	Insights into the industrial growth of cyanobacteria from a model of the carbonâ€concentrating mechanism. AICHE Journal, 2014, 60, 1269-1277.	3.6	18
63	Nonenzymatic Sugar Production from Biomass Using Biomass-Derived Î ³ -Valerolactone. Science, 2014, 343, 277-280.	12.6	607
64	Free fatty acid production in Escherichia coli under phosphate-limited conditions. Applied Microbiology and Biotechnology, 2013, 97, 5149-5159.	3.6	26
65	Production of medium chain length fatty alcohols from glucose in Escherichia coli. Metabolic Engineering, 2013, 20, 177-186.	7.0	98
66	Identification of Transport Proteins Involved in Free Fatty Acid Efflux in Escherichia coli. Journal of Bacteriology, 2013, 195, 135-144.	2.2	116
67	Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chemical Engineering Science, 2013, 103, 58-67.	3.8	48
68	Artificial repressors for controlling gene expression in bacteria. Chemical Communications, 2013, 49, 4325-4327.	4.1	42
69	Microbial production of fatty acid-derived fuels and chemicals. Current Opinion in Biotechnology, 2013, 24, 1044-1053.	6.6	174
70	Byâ€passing the refinery for production of highâ€value BTX derivatives. Biotechnology Journal, 2013, 8, 1375-1376.	3.5	0
71	Modulating Membrane Composition Alters Free Fatty Acid Tolerance in Escherichia coli. PLoS ONE, 2013, 8, e54031.	2.5	68

#	Article	IF	Citations
73	Functional and Structural Analysis of the Siderophore Synthetase AsbB through Reconstitution of the Petrobactin Biosynthetic Pathway from Bacillus anthracis. Journal of Biological Chemistry, 2012, 287, 16058-16072.	3.4	30
74	A translation-coupling DNA cassette for monitoring protein translation in Escherichia coli. Metabolic Engineering, 2012, 14, 298-305.	7.0	28
75	Engineering Escherichia coli for production of C12–C14 polyhydroxyalkanoate from glucose. Metabolic Engineering, 2012, 14, 705-713.	7.0	61
76	Engineering Escherichia coli to synthesize free fatty acids. Trends in Biotechnology, 2012, 30, 659-667.	9.3	174
77	Kinetic modeling of free fatty acid production in <i>Escherichia coli</i> based on continuous cultivation of a plasmid free strain. Biotechnology and Bioengineering, 2012, 109, 1518-1527.	3.3	34
78	Isolation of improved free fatty acid overproducing strains of ⟨i⟩Escherichia coli⟨/i⟩ via nile red based highâ€throughput screening. Environmental Progress and Sustainable Energy, 2012, 31, 17-23.	2.3	16
79	Freshwater diatoms as a source of lipids for biofuels. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 419-428.	3.0	51
80	Optimization of Synthetic Operons Using Libraries of Post-Transcriptional Regulatory Elements. Methods in Molecular Biology, 2011, 765, 99-111.	0.9	5
81	Bacterial production of free fatty acids from freshwater macroalgal cellulose. Applied Microbiology and Biotechnology, 2011, 91, 435-446.	3.6	31
82	Modular Synthase-Encoding Gene Involved in \hat{l}_{\pm} -Olefin Biosynthesis in Synechococcus sp. Strain PCC 7002. Applied and Environmental Microbiology, 2011, 77, 4264-4267.	3.1	170
83	Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli. Applied and Environmental Microbiology, 2011, 77, 8114-8128.	3.1	135
84	A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in <i>Escherichia coli</i> and catalytic conversion to alkanes. Biotechnology and Bioengineering, 2010, 106, 193-202.	3.3	223
85	Structural and functional analysis of AsbF: Origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17133-17138.	7.1	58
86	Application of Functional Genomics to Pathway Optimization for Increased Isoprenoid Production. Applied and Environmental Microbiology, 2008, 74, 3229-3241.	3.1	171
87	Directed Evolution of AraC for Improved Compatibility of Arabinose- and Lactose-Inducible Promoters. Applied and Environmental Microbiology, 2007, 73, 5711-5715.	3.1	97
88	Biosynthetic Analysis of the Petrobactin Siderophore Pathway from Bacillusanthracis. Journal of Bacteriology, 2007, 189, 1698-1710.	2.2	133
89	Characterization and Analysis of Early Enzymes for Petrobactin Biosynthesis in Bacillus anthracis. Biochemistry, 2007, 46, 4147-4157.	2.5	82
90	Microbial sensors for small molecules: Development of a mevalonate biosensor. Metabolic Engineering, 2007, 9, 30-38.	7.0	80

#	Article	lF	CITATIONS
91	Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nature Biotechnology, 2006, 24, 1027-1032.	17.5	492
92	Optimization of DsRed production in Escherichia coli: Effect of ribosome binding site sequestration on translation efficiency. Biotechnology and Bioengineering, 2005, 92, 553-558.	3.3	27