List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/681288/publications.pdf Version: 2024-02-01

		126907	138484
317	5,384	33	58
papers	citations	h-index	g-index
324	324	324	3840
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3-D BEM Formulations for Eddy-Current Problems With Multiply-Connected Domains and Circuit Coupling. IEEE Transactions on Magnetics, 2022, 58, 1-4.	2.1	2
2	A review on methods to simulate three dimensional rotating electrical machine in magnetic vector potential formulation using edge finite element method under sliding surface principle. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2022, 35, e2925.	1.9	1
3	FFT-PEEC: A Fast Tool From CAD to Power Electronics Simulations. IEEE Transactions on Power Electronics, 2022, 37, 700-713.	7.9	15
4	A New Strategy for Automatic Coupling Between the Inductive PEEC Method and an Integral Electrostatic Formulation. IEEE Transactions on Electromagnetic Compatibility, 2022, 64, 506-515.	2.2	0
5	Error Estimation and Adaptive Mesh Refinement for the Unstructured Inductive PEEC Formulation. IEEE Transactions on Magnetics, 2022, 58, 1-7.	2.1	2
6	Time-Domain Homogenization of Foil Windings in 2-D Axisymmetric Finite-Element Models. IEEE Transactions on Power Delivery, 2021, 36, 1264-1269.	4.3	2
7	A flux-based inverse integral formulation for steel shell magnetization identification. Journal of Magnetism and Magnetic Materials, 2021, 538, 168275.	2.3	0
8	Capacitance Computation of Multi-Turn Windings via Elementary Neighbor-Conductor Models. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2021, 6, 125-131.	2.2	0
9	Predicting the long-term stability of depletion-flocculated emulsions by static multiple light scattering (SMLS). Journal of Dispersion Science and Technology, 2020, 41, 648-655.	2.4	3
10	3D eddy currents computation by BEM using the modified magnetic vector potential and the reduced magnetic scalar potential. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2020, 33, e2642.	1.9	2
11	Volume Integral Equation Methods for Axisymmetric Problems With Conductive and Magnetic Media. IEEE Transactions on Magnetics, 2020, 56, 1-9.	2.1	0
12	Unstructured–PEEC Method for Thin Electromagnetic Media. IEEE Transactions on Magnetics, 2020, 56, 1-5.	2.1	5
13	Simultaneous screening of the stability and dosimetry of nanoparticles dispersions for in vitro toxicological studies with static multiple light scattering technique. Toxicology in Vitro, 2020, 69, 104972.	2.4	7
14	Unstructured PEEC method with the use of surface impedance boundary condition. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2020, 39, 1017-1030.	0.9	3
15	Time-Domain Finite-Element Eddy-Current Homogenization of Windings Using Foster Networks and Recursive Convolution. IEEE Transactions on Magnetics, 2020, 56, 1-8.	2.1	6
16	Maximising transferred power and preserving zero voltage switching in grid to vehicle and vehicle to grid modes of a wireless charging system. IET Electrical Systems in Transportation, 2020, 10, 196-203.	2.4	2
17	Large Surface <i>LC</i> -Resonant Metamaterials: From Circuit Model to Modal Theory and Efficient Numerical Methods. IEEE Transactions on Magnetics, 2020, 56, 1-4.	2.1	7
18	3-D Integral Formulation for Thin Electromagnetic Shells Coupled with an External Circuit. Applied Sciences (Switzerland), 2020, 10, 4284.	2.5	2

#	Article	IF	CITATIONS
19	Computational Strategies Improvement For The Unstructured Inductive PEEC Method. , 2020, , .		0
20	An Integral Face Formulation for Thin Non-Conductive Magnetic Regions. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	1
21	Bidirectional Wireless Power Transfer System with Wireless Control for Electrical Vehicle. , 2019, , .		7
22	An Extension of Unstructured-PEEC Method to Magnetic Media. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	16
23	Incorporation of a Vector Preisach–Mayergoyz Hysteresis Model in 3-D Finite Element Analysis. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	12
24	Modeling of Dynamic Current Distribution in REBCO Insulated Coils Using a Volume Integral Formulation for Protection Purpose. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	2
25	Modeling of â€~quench' or the occurrence and propagation of dissipative zones in REBCO high temperature superconducting coils. Superconductor Science and Technology, 2019, 32, 094001.	3.5	15
26	Unstructured - PEEC Method with the use of Surface Impedance Condition. , 2019, , .		1
27	A Numerical Approach Including the Winding Impact for Electrical Machine Vibration Analysis. , 2019, , .		Ο
28	An expression of the magnetic co-energy adapted to magnetostatic volume integral formulations - application to the magnetic force computation. International Journal of Applied Electromagnetics and Mechanics, 2019, 59, 3-8.	0.6	0
29	2-D Volume Integral Formulations for Nonlinear Magneto-Static Field Computation for Rotating Machines Pre-Design Considering Periodicities. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	1
30	A Highly Efficient Post-Processing Method for Computing Magnetic Flux in Coils Considering Magnetic and Conductive Regions. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	1
31	A semi-analytical method to compute the magnetic flux linkage of a 2D meshed coil in presence of magnetic materials â~' application to electrical motor pre-design. EPJ Applied Physics, 2018, 83, 20902.	0.7	Ο
32	Phase transitions in polymorphic materials probed using space-resolved diffusing wave spectroscopy. Soft Matter, 2018, 14, 6439-6448.	2.7	7
33	GPU-accelerated iterative solution of complex-entry systems issued from 3D edge-FEA of electromagnetics in the frequency domain. International Journal of High Performance Computing Applications, 2017, 31, 119-133.	3.7	1
34	Adaptive Multipoint Model Order Reduction Scheme for Large-Scale Inductive PEEC Circuits. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 1143-1151.	2.2	19
35	General Integral Formulation of Magnetic Flux Computation and Its Application to Inductive Power Transfer System. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	7
36	A Coupling Between the Facet Finite Element and Reluctance Network Methods in 3-D. IEEE Transactions on Magnetics, 2017, 53, 1-10.	2.1	1

#	Article	IF	CITATIONS
37	Space-resolved diffusing wave spectroscopy measurements of the macroscopic deformation and the microscopic dynamics in tensile strain tests. Optics and Lasers in Engineering, 2017, 88, 5-12.	3.8	24
38	General integral formulation of magnetic flux computation and its application in inductive power transfer system. , 2016, , .		0
39	Comparing partial element equivalent circuit and finite element methods for the resonant wireless power transfer 3D modeling. , 2016, , .		4
40	3D magnetic devices analysis using facet FEM formulation coupled with reluctance network method. , 2016, , .		1
41	3D volume integral formulation based on facet elements for the computation of AC losses in superconductors. , 2016, , .		1
42	3D modeling of the movement of machine using mortar method for edge finite elements of magnetic vector potential formulation. , 2016, , .		0
43	2D integral formulations for nonlinear magneto-static field computation and rotating machines pre-design. , 2016, , .		0
44	Preconditioning of a low-frequency electric field integral equation formulation with circuit coupling using H-matrices. , 2016, , .		1
45	Numerical model for quench calculations in a 10 kA MgB <inf>2</inf> superconducting cable. , 2016, , .		0
46	Volume Integral Formulation Using Face Elements for Electromagnetic Problem Considering Conductors and Dielectrics. IEEE Transactions on Electromagnetic Compatibility, 2016, 58, 1587-1594.	2.2	22
47	A Magnetic Vector Potential Volume Integral Formulation for Nonlinear Magnetostatic Problems. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	15
48	A Mixed Surface Volume Integral Formulation for the Modeling of High-Frequency Coreless Inductors. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	7
49	<inline-formula> <tex-math notation="LaTeX">\${A}\$ </tex-math> </inline-formula> – <inline-formula> <tex-math notation="LaTeX">\${T}\$ </tex-math> </inline-formula> Volume Integral Formulations for Solving Electromagnetic Problems in the Frequency Domain. IEEE Transactions on Magnetics. 2016, 52, 1-4.	2.1	8
50	3-D Numerical Modeling of AC Losses in Multifilamentary MgB ₂ Wires. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-7.	1.7	18
51	Computation of Source for Non-Meshed Coils in a Reduced Domain With <inline-formula> <tex-math notation="LaTeX">\${A}\$ </tex-math </inline-formula> â€" <inline-formula> <tex-math notation="LaTeX">\${V}\$ </tex-math </inline-formula> Formulation. IEEE Transactions on Magnetics, 2016. 52. 1-4.	2.1	0
52	Numerical Impact of Using Different \$E\$ –\$J\$ Relationships for 3-D Simulations of AC Losses in MgB2Superconducting Wires. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	7
53	Generalized PEEC Analysis of Inductive Coupling Phenomena in a Transmission Line Right-of-Way. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	1
54	3-D Integral Formulation Using Facet Elements for Thin Conductive Shells Coupled With an External Circuit. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	4

#	Article	IF	CITATIONS
55	A Magnetic Flux–Electric Current Volume Integral Formulation Based on Facet Elements for Solving Electromagnetic Problems. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	14
56	3-D Hybrid FEM–BEM Using Whitney Facet Elements and Independent Loops. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	5
57	Subproblem Finite-Element Refinement of Homogenized Dielectric Layers in Wound Inductors for Accurate Local Stresses Computation. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	1
58	Computations of Source for Non-Meshed Coils With A–\${V}\$ Formulation Using Edge Elements. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	5
59	Hybrid Natural Element Method-Boundary Element Method for Unbounded Problems. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	3
60	Numerical Modelling of AC Hysteresis Losses in HTS Tubes. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	9
61	A Volume Integral Formulation Based on Facet Elements for Nonlinear Magnetostatic Problems. IEEE Transactions on Magnetics, 2015, 51, 1-6.	2.1	21
62	Direct computation of current density to solve 3D electric conduction problems using facet elements with FEM. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2014, 27, 400-417.	1.9	1
63	Application of the virtual work principle to compute magnetic forces with a volume integral method. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2014, 27, 418-432.	1.9	6
64	The Adaptive Cross Approximation Technique for a Volume Integral Equation Method Applied to Nonlinear Magnetostatic Problems. IEEE Transactions on Magnetics, 2014, 50, 445-448.	2.1	11
65	An Integral Formulation for the Computation of 3-D Eddy Current Using Facet Elements. IEEE Transactions on Magnetics, 2014, 50, 549-552.	2.1	26
66	Study of Lightning Effects on Aircraft With Predominately Composite Structures. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 675-682.	2.2	16
67	Iterative Solution on GPU of Linear Systems Arising from the A-V Edge-FEA of Time-Harmonic Electromagnetic Phenomena. , 2014, , .		6
68	3-D Magnetostatic Moment Method Dedicated to Arc Interruption Process Modeling. IEEE Transactions on Magnetics, 2014, 50, 941-944.	2.1	7
69	A Differential Permeability 3-D Formulation for Anisotropic Vector Hysteresis Analysis. IEEE Transactions on Magnetics, 2014, 50, 341-344.	2.1	13
70	Modeling of Magneto-Mechanical Coupling Using Magnetic Volume Integral and Mechanical Finite-Element Methods. IEEE Transactions on Magnetics, 2014, 50, 233-236.	2.1	4
71	Use of genetic algorithms to design and optimize a high-efficiency LCIPT system. , 2013, , .		0
72	A Global Study of a Contactless Energy Transfer System: Analytical Design, Virtual Prototyping, and Experimental Validation. IEEE Transactions on Power Electronics, 2013, 28, 4690-4699.	7.9	35

GéRARD M MEUNIER

#	Article	IF	CITATIONS
73	Resolution of Nonlinear Magnetostatic Problems With a Volume Integral Method Using the Magnetic Scalar Potential. IEEE Transactions on Magnetics, 2013, 49, 1685-1688.	2.1	20
74	Homogenization of the Thin Dielectric Layers of Wound Components for the Computation of the Parasitic Capacitances in 2-D FE Electrostatics. IEEE Transactions on Magnetics, 2013, 49, 1849-1852.	2.1	6
75	General Integral Formulation for the 3D Thin Shell Modeling. IEEE Transactions on Magnetics, 2013, 49, 1989-1992.	2.1	7
76	Atmospheric re-organization during Marine Isotope Stage 3 over the North American continent: sedimentological and mineralogical evidence from the Gulf of Mexico. Quaternary Science Reviews, 2013, 81, 62-73.	3.0	16
77	Modeling and Computation of Losses in Conductors and Magnetic Cores of a Large Air Gap Transformer Dedicated to Contactless Energy Transfer. IEEE Transactions on Magnetics, 2013, 49, 586-590.	2.1	30
78	A Lossy Circuit Model Based on Physical Interpretation for Integrated Shielded Slow-Wave CMOS Coplanar Waveguide Structures. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 754-763.	4.6	61
79	A simple integral formulation for the modeling of thin conductive shells. EPJ Applied Physics, 2013, 64, 24513.	0.7	0
80	2D and 3D homogenization of laminated cores in the frequency domain. EPJ Applied Physics, 2013, 64, 24517.	0.7	1
81	Far Field Extrapolation from Near Field Interactions and Shielding Influence Investigations Based on a FE-PEEC Coupling Method. Electronics (Switzerland), 2013, 2, 80-93.	3.1	2
82	Modélisation électromagnétique des grands systèmes. L'apport des méthodes intégrales dans l'éti du foudroiement des avions. European Journal of Electrical Engineering, 2013, 16, 65-86.	ude 0.3	1
83	Coupling between PEEC and magnetic moment method. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2012, 32, 383-395.	0.9	3
84	Coupling between partial element equivalent circuit method and an integro-differential approach for solving electromagnetics problems. IET Science, Measurement and Technology, 2012, 6, 394.	1.6	2
85	AN INDEPENDENT LOOPS SEARCH ALGORITHM FOR SOLVING INDUCTIVE PEEC LARGE PROBLEMS. Progress in Electromagnetics Research M, 2012, 23, 53-63.	0.9	18
86	Modeling of Losses and Current Density Distribution in Conductors of a Large Air-Gap Transformer Using Homogenization and 3-D FEM. IEEE Transactions on Magnetics, 2012, 48, 763-766.	2.1	22
87	3-D Magnetic Scalar Potential Finite Element Formulation for Conducting Shells Coupled With an External Circuit. IEEE Transactions on Magnetics, 2012, 48, 323-326.	2.1	15
88	A New Integral Formulation for Eddy Current Computation in Thin Conductive Shells. IEEE Transactions on Magnetics, 2012, 48, 427-430.	2.1	21
89	Passive Microrheology for Measurement of the Concentrated Dispersions Stability. , 2012, , 101-105.		12
90	Inner-outer preconditioning strategy for 3D inductance extraction coupling with fast multipole method. , 2011, , .		1

6

#	Article	IF	CITATIONS
91	New coupling between PEEC method and an integro-differential approach for modeling solid conductors in the presence of magnetic-conductive thin plates. , 2011, , .		1
92	Modeling and simulating the lightning phenomenon: Aeronautic materials comparison in conducted and radiated modes. , 2011, , .		2
93	Numerical Methods for Eddy Currents Modeling of Planar Transformers. IEEE Transactions on Magnetics, 2011, 47, 1014-1017.	2.1	15
94	Electric Field Computation in Nonconducting Regions Using A-V After a \${m T}0-phi\$ Surface Impedance Magnetoharmonic Computation. IEEE Transactions on Magnetics, 2011, 47, 1434-1437.	2.1	0
95	Frequencyâ€domain homogenization for periodic electromagnetic structure. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2010, 29, 1416-1424.	0.9	Ο
96	Coupling t- <i>Ï•</i> formulation with surface impedance boundary condition for eddy current crack detection. EPJ Applied Physics, 2010, 52, 23302.	0.7	1
97	Comparison of FEM-PEEC Coupled Method and Finite-Element Method. IEEE Transactions on Magnetics, 2010, 46, 996-999.	2.1	14
98	Homogenization for Periodical Electromagnetic Structure: Which Formulation?. IEEE Transactions on Magnetics, 2010, 46, 3409-3412.	2.1	30
99	Numerical methods for eddy currents modeling of planar transformers. , 2010, , .		Ο
100	Electric field computation in non conducting regions using AV after a t <inf>0</inf> -ï† surface impedance magnetoharmonic computation. , 2010, , .		0
101	Modeling of large air gap transformers using magnetic equivalent circuit for designing of high power application. , 2010, , .		3
102	Film formation analysis by diffusive wave spectroscopy. Progress in Organic Coatings, 2009, 64, 515-519.	3.9	8
103	Dedicating Finite Volume Method to Electromagnetic Plasma Modeling: Circuit Breaker Application. IEEE Transactions on Magnetics, 2009, 45, 1262-1265.	2.1	2
104	Hysteresis of Soft Materials Inside Formulations: Delayed Diffusion Equations, Fields Coupling, and Nonlinear Properties. IEEE Transactions on Magnetics, 2008, 44, 914-917.	2.1	9
105	Coupling PEEC-Finite Element Method for Solving Electromagnetic Problems. IEEE Transactions on Magnetics, 2008, 44, 1330-1333.	2.1	9
106	Circuit-Coupled \${f t}_{0}hbox {-}phi\$ Formulation With Surface Impedance Condition. IEEE Transactions on Magnetics, 2008, 44, 730-733.	2.1	6
107	An Energy Based Approach of Electromagnetism Applied to Adaptive Meshing and Error Criteria. IEEE Transactions on Magnetics, 2008, 44, 1246-1249.	2.1	21
108	A 3D electric vector potential formulation for dynamic hysteresis and losses. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, 27, 277-287.	0.9	0

#	Article	IF	CITATIONS
109	Magnetic field computation of a common mode filter using Finite Element, PEEC methods and their coupling. , 2008, , .		5
110	Analytical and Numerical Contributions for Winding Losses Estimation in an Integrated Magnetic Component. , 2008, , .		1
111	Numerical study of a double preconditioning strategy. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, 27, 897-903.	0.9	1
112	FEMâ€₽EEC coupled method for modeling solid conductors in the presence of ferromagnetic material. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, 27, 904-910.	0.9	3
113	A tOâ€∔ surface impedance formulation for multiply connected conductors. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, 27, 64-71.	0.9	3
114	Dedicating Finite Volume Method to electromagnetic plasma modeling: Circuit breaker application. International Journal of Applied Electromagnetics and Mechanics, 2008, 28, 3-9.	0.6	3
115	On the Use of Automatic Cuts Algorithm for T0 – T – Φ Formulation in Nondestructive Testing by Eddy Current. Studies in Computational Intelligence, 2008, , 55-62.	0.9	4
116	Thermal-electromagnetic modeling of superconductors. Cryogenics, 2007, 47, 539-545.	1.7	18
117	A Magnetic Vector Potential Formulation to Deal With Dynamic Induced Losses Within 2-D Models. IEEE Transactions on Magnetics, 2007, 43, 1205-1208.	2.1	4
118	High-Frequency Proximity Losses Determination for Rectangular Cross-Section Conductors. IEEE Transactions on Magnetics, 2007, 43, 1213-1216.	2.1	30
119	Optimization of Low-Voltage Metallized Film Capacitor Geometry. IEEE Transactions on Magnetics, 2007, 43, 1569-1572.	2.1	11
120	Unification of Physical Data Models. Application in a Platform for Numerical Simulation: SALOME. IEEE Transactions on Magnetics, 2007, 43, 1661-1664.	2.1	2
121	Field diffusion-like representation and experimental identification of a dynamic magnetization property. Journal of Magnetism and Magnetic Materials, 2006, 304, e507-e509.	2.3	11
122	A New Three-Dimensional (3-D) Scalar Finite Element Method to Compute\$T_0\$. IEEE Transactions on Magnetics, 2006, 42, 1035-1038.	2.1	15
123	An energy-based formulation for dynamic hysteresis and extra-losses. IEEE Transactions on Magnetics, 2006, 42, 895-898.	2.1	7
124	On energy dissipation and hysteresis of materials in electromagnetic formulations, the dilemma of heterogeneity, local non linear properties, and fields coupling. , 2006, , .		0
125	An Energy-based Framework for Dynamic Hysteresis. , 2006, , .		0
126	3-D high frequency computation of transformer R, L parameters. IEEE Transactions on Magnetics, 2005, 41, 1364-1367.	2.1	14

#	Article	IF	CITATIONS
127	Coupling of an electrical arc model with FEM for vacuum interrupter designs. IEEE Transactions on Magnetics, 2005, 41, 1600-1603.	2.1	10
128	Automatic cuts for magnetic scalar potential formulations. IEEE Transactions on Magnetics, 2005, 41, 1668-1671.	2.1	14
129	An energy-based model for dynamic hysteresis. IEEE Transactions on Magnetics, 2005, 41, 3766-3768.	2.1	5
130	An energy-based model for dynamic hysteresis and extra-losses. , 2005, , .		0
131	Finite-Element Method Modeling of Superconductors: From 2-D to 3-D. IEEE Transactions on Applied Superconductivity, 2005, 15, 17-25.	1.7	102
132	Eddy-Current Effects in Circuit Breakers During Arc Displacement Phase. IEEE Transactions on Magnetics, 2004, 40, 1358-1361.	2.1	27
133	Coupled problem computation of 3-D multiply connected magnetic circuits and electric circuits. IEEE Transactions on Magnetics, 2003, 39, 1725-1728.	2.1	29
134	A nonlinear circuit coupled t - t/sub 0/ - φ formulation for solid conductors. IEEE Transactions on Magnetics, 2003, 39, 1729-1732.	2.1	54
135	Numerical computation of a vectorial hysteresis H(B) magnetization law. IEEE Transactions on Magnetics, 2003, 39, 1393-1396.	2.1	2
136	Toward a simulation of an optically controlled microwave microstrip line at 10 GHz. IEEE Transactions on Magnetics, 2002, 38, 681-684.	2.1	14
137	A current transformer modeling. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2002, 21, 505-511.	0.9	7
138	Comparison of numerical methods for modeling of superconductors. IEEE Transactions on Magnetics, 2002, 38, 849-852.	2.1	93
139	3-D computation of magnetic anomaly due to a rotating plate in the Earth's magnetic field. IEEE Transactions on Magnetics, 2002, 38, 553-556.	2.1	2
140	Magnetic discretion of naval propulsion machines. IEEE Transactions on Magnetics, 2002, 38, 1185-1188.	2.1	12
141	AC losses in superconducting solenoids. IEEE Transactions on Applied Superconductivity, 2002, 12, 1790-1794.	1.7	7
142	Circuit coupling method applied to bulk superconductors. IEEE Transactions on Magnetics, 2002, 38, 3661-3664.	2.1	5
143	Calculation of electrical machine magnetic stray fields. IET Science, Measurement and Technology, 2002, 149, 190-193.	0.7	5
144	Numerical modeling of electrical machines: requirements, state of the art, lacks. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 1198-1201.	2.3	2

#	Article	IF	CITATIONS
145	Magnetic discretion of naval propulsion machines. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 1190-1194.	2.3	2
146	Numerical modelling of Bi-2223 multifilamentary tapes with position-dependent Jc. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1800-1805.	1.2	8
147	On solving connexity problems within modeling massive conductors. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2001, 20, 51-61.	0.9	1
148	Electric railgun 3D modeling: computation of eddy currents and Lorentz force. IEEE Transactions on Magnetics, 2001, 37, 139-142.	2.1	10
149	The node distribution for meshless methods. EPJ Applied Physics, 2001, 15, 135-140.	0.7	3
150	Optimization of a finite element mesh for large air-gap deformations. EPJ Applied Physics, 2001, 13, 137-142.	0.7	8
151	3D modeling of thin wires interacting with thin plates: Extracting the singularity due to the loop wire self inductance. EPJ Applied Physics, 2001, 14, 63-67.	0.7	3
152	A new hysteresis model generation - application to the transverse axis of GO SiFe sheet. IEEE Transactions on Magnetics, 2001, 37, 3340-3344.	2.1	1
153	3-D modeling of thin wire and thin plate using finite element method and electrical circuit equation. IEEE Transactions on Magnetics, 2001, 37, 3238-3241.	2.1	15
154	Magneto-dynamic formulation to solve capacitive effect problems in an axi-symmetrical coil. IEEE Transactions on Magnetics, 2000, 36, 795-798.	2.1	5
155	3D modeling of shielding structures made by conductors and thin plates. IEEE Transactions on Magnetics, 2000, 36, 790-794.	2.1	9
156	Finite element modeling of permanent magnets under pulsed field. IEEE Transactions on Magnetics, 2000, 36, 1222-1225.	2.1	9
157	Numerical computation of the dynamic behavior of magnetic material considering magnetic diffusion and hysteresis. IEEE Transactions on Magnetics, 2000, 36, 1218-1221.	2.1	6
158	A hysteresis model for planar Hall effect in thin films. IEEE Transactions on Magnetics, 2000, 36, 1214-1217.	2.1	16
159	A chemical reaction hysteresis model for magnetic materials. IEEE Transactions on Magnetics, 2000, 36, 1230-1233.	2.1	6
160	A unique distribution of forces in permanent magnets using scalar and vector potential formulations. IEEE Transactions on Magnetics, 2000, 36, 3345-3348.	2.1	12
161	Different formulations to model superconductors. IEEE Transactions on Magnetics, 2000, 36, 1226-1229.	2.1	43
162	Développement d'une cellule pour des études EXAFS in situ de pots catalytiques de voiture. European Physical Journal Special Topics, 2000, 10, Pr10-449-Pr10-454.	0.2	0

#	Article	IF	CITATIONS
163	A new technique for stranded coil treatment in a 3D edge element based formulation. IEEE Transactions on Magnetics, 1999, 35, 1837-1840.	2.1	0
164	TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta, 1999, 50, 445-456.	5.5	447
165	About the distribution of forces in permanent magnets. IEEE Transactions on Magnetics, 1999, 35, 1215-1218.	2.1	34
166	Innovating approches to the generation of intense magnetic field: Optimization of a permanent magnet flux source. EPJ Applied Physics, 1999, 5, 85-89.	0.7	14
167	Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models. , 1998, 6, 250-269.		139
168	3D mesh connection techniques applied to movement simulation. IEEE Transactions on Magnetics, 1998, 34, 3359-3362.	2.1	33
169	Analysis of magnetic characteristics of permanent magnet assembly for MRI devices taking account of hysteresis and eddy current. IEEE Transactions on Magnetics, 1998, 34, 3556-3559.	2.1	5
170	3D edge element based formulation coupled to electric circuits. IEEE Transactions on Magnetics, 1998, 34, 3162-3165.	2.1	19
171	Computation of coupled problem of 3D eddy current and electrical circuit by using T/sub 0/-T-φ formulation. IEEE Transactions on Magnetics, 1998, 34, 3074-3077.	2.1	26
172	Direct magnetic loss analysis by FEM considering vector magnetic properties. IEEE Transactions on Magnetics, 1998, 34, 3008-3011.	2.1	31
173	Distribution of electromagnetic force in permanent magnets. IEEE Transactions on Magnetics, 1998, 34, 3012-3015.	2.1	30
174	Innovating approaches to the generation of intense magnetic fields : design and optimization of a 4 Tesla permanent magnet flux source. IEEE Transactions on Magnetics, 1998, 34, 2465-2468.	2.1	51
175	Comparison of global force calculations on permanent magnets. IEEE Transactions on Magnetics, 1998, 34, 3560-3563.	2.1	37
176	Simulation of dynamics of electromagnetic driving device for comet ground penetrator. IEEE Transactions on Magnetics, 1998, 34, 3146-3149.	2.1	15
177	Modélisation des boucles d'immunisation magnétique des navires. EPJ Applied Physics, 1998, 1, 225-231.	0.7	1
178	CAD of a direct drive rotary motor based on giant magnetostrictive alloys. European Physical Journal Special Topics, 1998, 08, Pr2-785-Pr2-788.	0.2	0
179	Application of magnetostrictive thin films for microdevices. IEEE Transactions on Magnetics, 1997, 33, 2163-2166.	2.1	25
180	Computation of 3-D current driven eddy current problems using cutting surfaces. IEEE Transactions on Magnetics, 1997, 33, 1314-1317.	2.1	5

#	Article	IF	CITATIONS
181	Nonlinear finite element modelling of magneto-mechanical phenomenon in giant magnetostrictive thin films. IEEE Transactions on Magnetics, 1997, 33, 1620-1623.	2.1	25
182	Méthodes de type éléments finis pour le calcul des champs électriques et magnétiques en électroencéphalographie et magnétoencéphalographie. Journal De Physique III, 1997, 7, 2419-2431.	0.3	0
183	Finite element modeling of unbounded problems: use of a geometrical transformation and comparison with the boundary integral method. IEEE Transactions on Magnetics, 1996, 32, 1401-1404.	2.1	3
184	Calculating the impedance of a grounding system. IEEE Transactions on Magnetics, 1996, 32, 1509-1512.	2.1	47
185	Surface impedance for 3D nonlinear eddy current problems-application to loss computation in transformers. IEEE Transactions on Magnetics, 1996, 32, 808-811.	2.1	33
186	A three dimensional finite element modelling of rotating machines involving movement and external circuit. IEEE Transactions on Magnetics, 1996, 32, 1070-1073.	2.1	9
187	A 3D finite-element computation of eddy currents and losses in the stator end laminations of large synchronous machines. IEEE Transactions on Magnetics, 1996, 32, 1569-1572.	2.1	32
188	2D nonlinear finite element modelling of electromagnetic retarders using time-stepping algorithms, and the Petrov-Galerkin method with homogenization techniques. IEEE Transactions on Magnetics, 1996, 32, 772-775.	2.1	3
189	Caractérisation par spectroscopie d'absorption X de catalyseurs de dépollution de gaz d'échappement automobile du type Pt, Rh/Al ₂ O ₃ . European Physical Journal Special Topics, 1996, 06, C4-957-C4-966.	0.2	1
190	A shell element for computing 3D eddy currents-application to transformers. IEEE Transactions on Magnetics, 1995, 31, 1360-1363.	2.1	42
191	Analysis of microwave planar circuits. MIC2D: a user-friendly software based on a time domain finite element method. IEEE Transactions on Magnetics, 1995, 31, 1650-1653.	2.1	1
192	Finite element modelling of magnetostrictive devices: investigations for the design of the magnetic circuit. IEEE Transactions on Magnetics, 1995, 31, 1813-1816.	2.1	10
193	Dynamic modelling of giant magnetostriction in Terfenol-D rods by the finite element method. IEEE Transactions on Magnetics, 1995, 31, 1821-1824.	2.1	29
194	3D line current model of coils and external circuits. IEEE Transactions on Magnetics, 1995, 31, 1853-1856.	2.1	18
195	Influence of a conductive plane on loop inductance. IEEE Transactions on Magnetics, 1995, 31, 2127-2130.	2.1	13
196	A 3-D finite-element computation of eddy currents and losses in laminated iron cores allowing for electric and magnetic anisotropy. IEEE Transactions on Magnetics, 1995, 31, 2139-2141.	2.1	46
197	A finite element method for calculating the electromagnetic fields generated by substation grounding systems. IEEE Transactions on Magnetics, 1995, 31, 2150-2153.	2.1	53
198	New amorphous molybdenum oxysulfide thin films their characterization and their electrochemical properties. Journal of Power Sources, 1995, 54, 352-355.	7.8	13

GéRARD M MEUNIER

#	Article	IF	CITATIONS
199	X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films. Thin Solid Films, 1995, 258, 110-114.	1.8	134
200	Amorphous molybdenum oxysulfide thin films and their physical characterization. Thin Solid Films, 1995, 260, 21-25.	1.8	21
201	Finite element modelling of giant magnetostriction in thin films. IEEE Transactions on Magnetics, 1995, 31, 3563-3565.	2.1	11
202	The characterisation of passive multilayer components by electromagnetic field computation. IEEE Transactions on Magnetics, 1994, 30, 3012-3015.	2.1	4
203	Three dimensional magnetostatic finite elements for gaps and iron shells using magnetic scalar potentials. IEEE Transactions on Magnetics, 1994, 30, 2885-2888.	2.1	25
204	New amorphous molybdenum oxysulfides obtained in the form of thin films and their characterization by TEM. Thin Solid Films, 1994, 245, 34-39.	1.8	22
205	XPS analysis of lithium intercalation in thin films of molybdenum oxysulphides. Surface and Interface Analysis, 1994, 22, 206-210.	1.8	56
206	FEM modelling of the magnetic, thermal, electrical and mechanical transient phenomena in linear induction launchers. IEEE Transactions on Magnetics, 1994, 30, 3312-3315.	2.1	9
207	3D finite element investigation of the magnetic field outside electromagnetic devices. IEEE Transactions on Magnetics, 1994, 30, 2964-2967.	2.1	1
208	Use of the diffuse approximation method for electromagnetic field computation. IEEE Transactions on Magnetics, 1994, 30, 3558-3561.	2.1	7
209	Modeling of Printed Circuit Board loop inductance. IEEE Transactions on Magnetics, 1994, 30, 3590-3593.	2.1	12
210	Synthesis and characterization of titanium hydride thin films obtained by reactive cathodic sputtering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 18, 303-307.	3.5	10
211	3D modeling of electromagnets fed by alternating voltage sources. IEEE Transactions on Magnetics, 1993, 29, 1341-1344.	2.1	16
212	End winding reactance computation using a 3D finite element program. IEEE Transactions on Magnetics, 1993, 29, 1411-1414.	2.1	27
213	3D eddy current losses calculation in transformer tanks using the finite element method. IEEE Transactions on Magnetics, 1993, 29, 1419-1422.	2.1	25
214	Use of the diffuse element method for electromagnetic field computation. IEEE Transactions on Magnetics, 1993, 29, 1475-1478.	2.1	15
215	Coupled field-circuit problems: trends and accomplishments. IEEE Transactions on Magnetics, 1993, 29, 1701-1704.	2.1	100
216	A general purpose method for electric and magnetic combined problems for 2D, axisymmetric and transient systems. IEEE Transactions on Magnetics, 1993, 29, 1737-1740.	2.1	62

#	Article	IF	CITATIONS
217	Ship magnetizations modelling by the finite element method. IEEE Transactions on Magnetics, 1993, 29, 1970-1975.	2.1	35
218	3D finite element computation of the high frequency parameters of power transformer windings. IEEE Transactions on Magnetics, 1993, 29, 1407-1410.	2.1	23
219	FEM computation of eddy current and forces in moving systems; application to linear induction launcher. IEEE Transactions on Magnetics, 1993, 29, 1989-1992.	2.1	14
220	Nonlinear finite element modelling of giant magnetostriction. IEEE Transactions on Magnetics, 1993, 29, 2467-2469.	2.1	20
221	Couplage des équations électriques et magnétiques. Journal De Physique III, 1993, 3, 397-412.	0.3	5
222	Détermination en tridimensionnel des pertes par courant de Foucault dans la cuve d'un transformateur. Journal De Physique III, 1993, 3, 495-507.	0.3	2
223	Eléments finis transformés. Application à la modélisation des problèmes à frontières ouvertes. Journal De Physique III, 1993, 3, 423-442.	0.3	0
224	Détermination des paramètres du schéma équivalent discrétisé des enroulements d'un transformateur. Journal De Physique III, 1993, 3, 455-467.	0.3	0
225	Thin film permeation membranes for hydrogen purification. International Journal of Hydrogen Energy, 1992, 17, 599-602.	7.1	23
226	A new 3D AV- Phi - Phi /sub r/ formulation. IEEE Transactions on Magnetics, 1992, 28, 1204-1207.	2.1	2
227	A general method for electric and magnetic coupled problem in 2D and magnetodynamic domain. IEEE Transactions on Magnetics, 1992, 28, 1291-1294.	2.1	58
228	On the use of the surface impedance concept in shielded and multiconductor cable characterization by the finite element method. IEEE Transactions on Magnetics, 1992, 28, 1446-1449.	2.1	8
229	The impedance boundary condition applied to the finite element method using the magnetic vector potential as state variable: a rigorous solution for high frequency axisymmetric problems. IEEE Transactions on Magnetics, 1992, 28, 1643-1646.	2.1	13
230	Finite element modeling of unbounded problems using transformations: a rigorous, powerful and easy solution. IEEE Transactions on Magnetics, 1992, 28, 1663-1666.	2.1	90
231	A general purpose tool for restoring inter-element continuity. IEEE Transactions on Magnetics, 1992, 28, 1728-1731.	2.1	33
232	Simulation of induction machine operation using a step by step finite element method coupled with circuits and mechanical equations. IEEE Transactions on Magnetics, 1991, 27, 5232-5234.	2.1	60
233	XPS study of thin films of titanium oxysulfides. Surface Science, 1991, 254, 81-89.	1.9	329
234	Two-dimensional transformer modeling taking into account the edge effects by introduction of a correction factor. IEEE Transactions on Magnetics, 1991, 27, 4998-4999.	2.1	1

#	Article	IF	CITATIONS
235	New amorphous titanium oxysulfides obtained in the form of thin films. Thin Solid Films, 1991, 205, 213-217.	1.8	23
236	The finite element post-processor of FLUX3D (field computation package). IEEE Transactions on Magnetics, 1991, 27, 3786-3791.	2.1	10
237	Finite-element analysis of waveguide scattering problems. IEEE Transactions on Magnetics, 1991, 27, 3890-3893.	2.1	2
238	Techniques for computing the sheet winding transformers ohmic losses using numerical and analytical methods. IEEE Transactions on Magnetics, 1991, 27, 3943-3946.	2.1	3
239	Simulation of induction machines using complex magnetodynamic finite element method coupled with the circuit equations. IEEE Transactions on Magnetics, 1991, 27, 4246-4249.	2.1	42
240	INFLUENCE OF INDUCED CURRENTS IN CONDUCTORS ON LEAKAGE AND LOSSES IN A TRANSFORMER. Electric Power Components and Systems, 1991, 19, 55-68.	0.1	9
241	1991, 69, 4835-4837.	2.5	9
242	Application of the impedance boundary condition in a finite element environment using the reduced potential formulation. IEEE Transactions on Magnetics, 1991, 27, 5022-5024.	2.1	20
243	An original solution for unbounded electromagnetic 2D- and 3D-problems throughout the finite element method. IEEE Transactions on Magnetics, 1990, 26, 1659-1661.	2.1	44
244	Line element for efficient computation of the magnetic field created by thin iron plates. IEEE Transactions on Magnetics, 1990, 26, 2196-2198.	2.1	32
245	Computation of 2D and 3D eddy currents in moving conductors of electromagnetic retarders. IEEE Transactions on Magnetics, 1990, 26, 2382-2384.	2.1	25
246	New techniques in FEM field calculation applied to power cable characteristics computation. IEEE Transactions on Magnetics, 1990, 26, 2388-2390.	2.1	17
247	Comparison between various hysteresis models and experimental data. IEEE Transactions on Magnetics, 1990, 26, 2837-2839.	2.1	35
248	Magnetic fields in nonlinear anisotropic grain-oriented iron-sheet. IEEE Transactions on Magnetics, 1990, 26, 524-527.	2.1	29
249	Finite element modeling of open boundary problems. IEEE Transactions on Magnetics, 1990, 26, 588-591.	2.1	45
250	Sensitivity analysis of the nodal position in the adaptive refinement of finite element meshes. IEEE Transactions on Magnetics, 1990, 26, 787-790.	2.1	10
251	2-D finite element calculation of shell losses in power transformers, taking the third dimension into account by means of a correction factor. IEEE Transactions on Magnetics, 1990, 26, 925-928.	2.1	3
252	Computation of the readback voltage in digital magnetic recording. Journal of Magnetism and Magnetic Materials, 1990, 83, 48-50.	2.3	2

#	Article	IF	CITATIONS
253	2D finiteâ€element and analytic calculation of eddyâ€current losses in thin linear conductors. Journal of Applied Physics, 1990, 67, 4726-4728.	2.5	3
254	Simulation of induction machine operation using a stepâ€byâ€step finiteâ€element method. Journal of Applied Physics, 1990, 67, 5809-5811.	2.5	9
255	Magnetic field computation in a transformer core with an automatic adaptive mesh generator. Journal of Applied Physics, 1990, 67, 5806-5808.	2.5	5
256	Comparison between various hysteresis models and experimental data. Journal of Applied Physics, 1990, 67, 5379-5381.	2.5	13
257	p―andhâ€ŧype adaptive mesh generation. Journal of Applied Physics, 1990, 67, 5803-5805.	2.5	24
258	Modelling Nonlinear Magnetic Materials for Field Computation. Journal of Electromagnetic Waves and Applications, 1990, 4, 1027-1054.	1.6	2
259	An Original Solution for unbounded electromagnetic 2D- and 3D problems throughout the finite element method. , 1990, , .		6
260	Line element for efficient computation of the magnetic field created by thin iron plates. , 1990, , .		3
261	Calcul des courants de Foucault en trois dimensions par une formulation utilisant le potentiel vecteur magnétique et le potentiel scalaire électrique. Revue De Physique Appliquée, 1990, 25, 593-603.	0.4	2
262	Quelques modèles de calcul de pertes supplémentaires dans les bobinages des transformateurs de puissance. Revue De Physique Appliquée, 1990, 25, 295-311.	0.4	0
263	Méthode des intégrales de frontières pour les problèmes magnétiques à symétrie axiale et couplage avec la méthode des éléments finis. Revue De Physique Appliquée, 1990, 25, 613-626.	0.4	2
264	3D numerical model of electromagnetic quadrupoles for the Grenoble European Synchrotron. IEEE Transactions on Magnetics, 1989, 25, 2840-2842.	2.1	0
265	An approach for automatic adaptive mesh refinement in finite element computation of magnetic fields. IEEE Transactions on Magnetics, 1989, 25, 2965-2967.	2.1	35
266	Simulation of induction machine operation using complex magnetodynamic finite elements. IEEE Transactions on Magnetics, 1989, 25, 3064-3066.	2.1	68
267	A new model for nonlinear anisotropic hard magnetic material. IEEE Transactions on Magnetics, 1989, 25, 3083-3085.	2.1	5
268	Nonlinear permanent magnets modelling with the finite element method. IEEE Transactions on Magnetics, 1989, 25, 3581-3583.	2.1	5
269	Spectral analysis of electromagnetic vibrations in DC machines through the finite element method. IEEE Transactions on Magnetics, 1989, 25, 3590-3592.	2.1	9
270	Solid state microbatteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1989, 3, 5-12.	3.5	45

#	Article	IF	CITATIONS
271	New positive-electrode materials for lithium thin film secondary batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1989, 3, 19-23.	3.5	79
272	Comparison between 3D, 2D finite element methods and analytical calculations for electromagnetic problems. IEEE Transactions on Magnetics, 1988, 24, 66-69.	2.1	4
273	Modelisation of 2D and axisymmetric magnetodynamic domain by the finite elements method. IEEE Transactions on Magnetics, 1988, 24, 166-169.	2.1	32
274	Magnetic forces and mechanical behavior of ferromagnetic materials. Presentation and results on the theoretical, experimental and numerical approaches. IEEE Transactions on Magnetics, 1988, 24, 234-237.	2.1	12
275	A posteriori error estimate for adaptive finite element mesh generation. IEEE Transactions on Magnetics, 1988, 24, 315-317.	2.1	31
276	Tridimensional modelling of current and magnetic flux lines. IEEE Transactions on Magnetics, 1988, 24, 378-380.	2.1	3
277	Use of formulae in finite element post processing. IEEE Transactions on Magnetics, 1988, 24, 389-392.	2.1	1
278	Three-dimensional anisotropic magnetic field calculation in transformer cores. IEEE Transactions on Magnetics, 1988, 24, 483-486.	2.1	4
279	Computation of electromagnetic phenomena appearing in a plasma torch. IEEE Transactions on Magnetics, 1988, 24, 526-529.	2.1	1
280	Calculation of extra losses in shell form power transformer windings. IEEE Transactions on Magnetics, 1988, 24, 2673-2675.	2.1	2
281	Hysteresis computation in oriented recording media. IEEE Transactions on Magnetics, 1987, 23, 210-213.	2.1	1
282	3D anisotropic magnetic field calculation in transformer joints. IEEE Transactions on Magnetics, 1987, 23, 3783-3785.	2.1	8
283	Adsorption of vanadate on Î ³ -alumina: Comparison with other isopolyanions. Applied Catalysis, 1986, 21, 329-335.	0.8	28
284	Mechanical deformation of a conductor under electromagnetic stresses. IEEE Transactions on Magnetics, 1986, 22, 828-830.	2.1	6
285	Hybrid finite element boundary element solutions for three dimensional scalar potential problems. IEEE Transactions on Magnetics, 1986, 22, 1040-1042.	2.1	24
286	Outil de modélisation de systèmes d'enregistrement magnétique. Revue De Physique Appliquée, 1986, 2 435-441.	^{1,} 0.4	0
287	Energy methods for the evaluation of global quantities and integral parameters in a finite elements analysis of electromagnetic devices. IEEE Transactions on Magnetics, 1985, 21, 1817-1822.	2.1	17
288	Two dimensional hysteresis model using finite element method. IEEE Transactions on Magnetics, 1985, 21, 2362-2365.	2.1	1

#	Article	IF	CITATIONS
289	Flux3D, a finite element package for magnetic computation. IEEE Transactions on Magnetics, 1985, 21, 2499-2502.	2.1	23
290	Solution of magnetic fields and electrical circuits combined problems. IEEE Transactions on Magnetics, 1985, 21, 2288-2291.	2.1	25
291	Evidences for an efficient demethylation of methoxyellipticine derivatives catalyzed by a peroxidase. Journal of the American Chemical Society, 1985, 107, 2558-2560.	13.7	34
292	Finite element implementation of virtual work principle for magnetic or electric force and torque computation. IEEE Transactions on Magnetics, 1984, 20, 1894-1896.	2.1	219
293	Two 3D parametered mesh generators for the magnetic field computation. IEEE Transactions on Magnetics, 1984, 20, 1900-1902.	2.1	4
294	A model for the current interruption of an electric arc. IEEE Transactions on Magnetics, 1984, 20, 1956-1958.	2.1	13
295	Magnetic field computation for electric arc modelling. IEEE Transactions on Magnetics, 1983, 19, 2593-2595.	2.1	9
296	Unexpected regiospecific alkylation of the antitumor agent N2-methyl-9-hydroxyellipticinium acetate with N, O or S donors. Tetrahedron Letters, 1983, 24, 365-368.	1.4	31
297	Three-dimensional analysis of a micromotor by the finite element method. Journal of Magnetism and Magnetic Materials, 1982, 26, 333-336.	2.3	0
298	An original stationary method using local jacobian derivative for direct finite element computation of electromagnetic force, torque and stiffness. Journal of Magnetism and Magnetic Materials, 1982, 26, 337-339.	2.3	7
299	FLUX: A general interactive finite elements package for 2D electromagnetic fields. IEEE Transactions on Magnetics, 1982, 18, 624-626.	2.1	40
300	Finite elements analysis of a self starting synchronous motor. IEEE Transactions on Magnetics, 1981, 17, 3399-3401.	2.1	0
301	Apport de la géostatistique à la description des stockages de gaz en aquifère. Oil & Gas Science & Technology, 1981, 36, 309-327.	0.2	7
302	Software for computer-aided analysis of electromagnetic fields. IEEE Transactions on Magnetics, 1980, 16, 1435-1437.	2.1	6
303	A new thermochemical process for hydrogen production. International Journal of Hydrogen Energy, 1979, 4, 7-11.	7.1	2
304	Computer methods for electrical and magnetic devices designed by field analysis. IEEE Transactions on Magnetics, 1979, 15, 1671-1673.	2.1	5
305	Pompage optique et absorption saturée d'un faisceau d'ions rapides superposé à un faisceau laser continu. Journal De Physique, 1977, 38, 1185-1200.	1.8	14
306	High-Resolution Studies in Ion Beams with Laser-Induced Resonances. Physical Review Letters, 1976, 37, 1678-1681.	7.8	40

#	Article	IF	CITATIONS
307	Cell's height variation approach with finite elements modelization. , 0, , .		0
308	Finite element modeling of Terfenol-D magneto-mechanical coupling: application to a direct micro-stepping rotary motor. , 0, , .		3
309	A new vectorial hysteresis model for cube textured NiFe sheet based on a chemical reaction analogy. , 0, , .		1
310	Applying, Canceling and Identifying the Magnetic Field Received and Emitted by a 2D Plan System. , 0, , .		1
311	Unification of physical data models. Application in a platform for numerical simulation: SALOME. , 0, , .		1
312	A Magnetic Vector Potential Formation to Deal with Dynamic Hysteresis and Induced Losses with Two-Dimensional Models. , 0, , .		0
313	Toward an Energy-based Error Criterion for Adaptive Meshing. , 0, , .		Ο
314	High Frequency Proximity Losses Determination for Rectangular Cross Section Conductors. , 0, , .		1
315	Minimization of Eddy Current Losses in a Straight Rectangular Cross Section Conductor. , 0, , .		1
316	Optimization of low voltage metallized film capacitor geometry. , 0, , .		0
317	Electromagnetic Model in Finite Volume for Magnetohydrodynamic Breaking Applications. , 0, , .		0