Peter Sutovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6812603/publications.pdf

Version: 2024-02-01

185 papers 10,208 citations

52 h-index 92 g-index

189

189 docs citations

189 times ranked 8200 citing authors

#	Article	IF	Citations
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq $1\ 1\ 0.784314\ rgBT/Ov$	veglock 10	Tf,59,742 Ts
2	Ubiquitin tag for sperm mitochondria. Nature, 1999, 402, 371-372.	27.8	558
3	Ubiquitinated Sperm Mitochondria, Selective Proteolysis, and the Regulation of Mitochondrial Inheritance in Mammalian Embryos1. Biology of Reproduction, 2000, 63, 582-590.	2.7	365
4	Centrosome Reduction During Gametogenesis and Its Significance 1. Biology of Reproduction, 2005, 72, 2-13.	2.7	283
5	Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: Killing three birds with one stone. Microscopy Research and Technique, 2003, 61, 88-102.	2.2	248
6	Unique checkpoints during the first cell cycle of fertilization after intracytoplasmic sperm injection in rhesus monkeys. Nature Medicine, 1999, 5, 431-433.	30.7	221
7	Fate of the Sperm Mitochondria, and the Incorporation, Conversion, and Disassembly of the Sperm Tail Structures during Bovine Fertilization 1. Biology of Reproduction, 1996, 55, 1195-1205.	2.7	196
8	Depletion of Glutathione during Bovine Oocyte Maturation Reversibly Blocks the Decondensation of the Male Pronucleus and Pronuclear Apposition during Fertilization1. Biology of Reproduction, 1997, 56, 1503-1512.	2.7	193
9	Paternal Contributions to the Mammalian Zygote: Fertilization after Sperm-Egg Fusion. International Review of Cytology, 1999, 195, 1-65.	6.2	182
10	PAWP, a Sperm-specific WW Domain-binding Protein, Promotes Meiotic Resumption and Pronuclear Development during Fertilization. Journal of Biological Chemistry, 2007, 282, 12164-12175.	3.4	155
11	Ubiquitination of Prohibitin in Mammalian Sperm Mitochondria: Possible Roles in the Regulation of Mitochondrial Inheritance and Sperm Quality Control 1. Biology of Reproduction, 2003, 69, 254-260.	2.7	148
12	Interactions of sperm perinuclear theca with the oocyte: Implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microscopy Research and Technique, 2003, 61, 362-378.	2.2	141
13	Centrosome Reduction during Mouse Spermiogenesis. Developmental Biology, 1998, 203, 424-434.	2.0	130
14	Autophagy and ubiquitin–proteasome system contribute to sperm mitophagy after mammalian fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5261-70.	7.1	127
15	Proteasomal Interference Prevents Zona Pellucida Penetration and Fertilization in Mammals1. Biology of Reproduction, 2004, 71, 1625-1637.	2.7	119
16	SNAREs in Mammalian Sperm: Possible Implications for Fertilization. Developmental Biology, 2000, 223, 54-69.	2.0	115
17	Sperm proteasome and fertilization. Reproduction, 2011, 142, 1-14.	2.6	112
18	Dynamic Changes of Gap Junctions and Cytoskeleton during in Vitro Culture of Cattle Oocyte Cumulus Complexes1. Biology of Reproduction, 1993, 49, 1277-1287.	2.7	111

#	Article	IF	Citations
19	Vesicular Traffic and Golgi Apparatus Dynamics During Mammalian Spermatogenesis: Implications for Acrosome Architecture 1. Biology of Reproduction, 2000, 63, 89-98.	2.7	110
20	Fertilization and early embryology: Intracytoplasmic sperm injection for Rhesus monkey fertilization results in unusual chromatin, cytoskeletal, and membrane events, but eventually leads to pronuclear development and sperm aster assembly. Human Reproduction, 1996, 11, 1703-1712.	0.9	108
21	The Removal of the Sperm Perinuclear Theca and Its Association with the Bovine Oocyte Surface during Fertilization. Developmental Biology, 1997, 188, 75-84.	2.0	108
22	Ubiquitin-based sperm assay for the diagnosis of male factor infertility. Human Reproduction, 2001, 16, 250-258.	0.9	105
23	Spermâ€derived WW domainâ€binding protein, PAWP, elicits calcium oscillations and oocyte activation in humans and mice. FASEB Journal, 2014, 28, 4434-4440.	0.5	105
24	Microtubule and Chromatin Configurations during Rhesus Intracytoplasmic Sperm Injection: Successes and Failures 1. Biology of Reproduction, 1996, 55, 271-280.	2.7	102
25	Zinc ion flux during mammalian sperm capacitation. Nature Communications, 2018, 9, 2061.	12.8	97
26	Early Degradation of Paternal Mitochondria in Domestic Pig (Sus scrofa) Is Prevented by Selective Proteasomal Inhibitors Lactacystin and MG1321. Biology of Reproduction, 2003, 68, 1793-1800.	2.7	93
27	Degradation of paternal mitochondria after fertilization: implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reproductive BioMedicine Online, 2004, 8, 24-33.	2.4	92
28	Atypical decondensation of the sperm nucleus, delayed replication of the male genome, and sex chromosome positioning following intracytoplasmic human sperm injection (ICSI) into golden hamster eggs: does ICSI itself introduce chromosomal anomalies?. Fertility and Sterility, 2000, 74, 454-460.	1.0	91
29	Ubiquitin C-Terminal Hydrolase-Activity Is Involved in Sperm Acrosomal Function and Anti-Polyspermy Defense During Porcine Fertilization1. Biology of Reproduction, 2007, 77, 780-793.	2.7	84
30	The Mammalian Testis-Specific Thioredoxin System. Antioxidants and Redox Signaling, 2004, 6, 25-40.	5.4	81
31	Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization. Journal of Reproductive Immunology, 2009, 83, 2-7.	1.9	81
32	Ubiquitin-dependent sperm quality control mechanism recognizes spermatozoa with DNA defects as revealed by dual ubiquitin-TUNEL assay. Molecular Reproduction and Development, 2002, 61, 406-413.	2.0	78
33	Biparental Inheritance of Î ³ -Tubulin during Human Fertilization: Molecular Reconstitution of Functional Zygotic Centrosomes in Inseminated Human Oocytes and in Cell-free Extracts Nucleated by Human Sperm. Molecular Biology of the Cell, 1999, 10, 2955-2969.	2.1	77
34	Sperm Protamine-Status Correlates to the Fertility of Breeding Bulls1. Biology of Reproduction, 2015, 92, 92.	2.7	77
35	Increased Conception Rates in Beef Cattle Inseminated with Nanopurified Bull Semen1. Biology of Reproduction, 2014, 91, 97.	2.7	7 5
36	The extracellular protein coat of the inner acrosomal membrane is involved in zona pellucida binding and penetration during fertilization: Characterization of its most prominent polypeptide (IAM38). Developmental Biology, 2006, 290, 32-43.	2.0	74

#	Article	IF	CITATIONS
37	The role of sperm proteasomes during sperm aster formation and early zygote development: implications for fertilization failure in humans. Human Reproduction, 2008, 23, 573-580.	0.9	72
38	Mechanism of extracellular ubiquitination in the mammalian epididymis. Journal of Cellular Physiology, 2008, 215, 684-696.	4.1	71
39	Sperm Proteasomes Degrade Sperm Receptor on the Egg Zona Pellucida during Mammalian Fertilization. PLoS ONE, 2011, 6, e17256.	2.5	71
40	ICSI choreography: fate of sperm structures after monospermic rhesus ICSI and first cell cycle implications. Human Reproduction, 2000, 15, 2610-2620.	0.9	69
41	Mitochondrial distribution and microtubule organization in fertilized and cloned porcine embryos: Implications for developmental potential. Developmental Biology, 2006, 299, 206-220.	2.0	67
42	Expression of Bisecting Type and Lewisx/Lewisy Terminated N-Glycans on Human Sperm. Journal of Biological Chemistry, 2007, 282, 36593-36602.	3.4	65
43	Method of oocyte activation affects cloning efficiency in pigs. Molecular Reproduction and Development, 2009, 76, 490-500.	2.0	65
44	Zinc: A Necessary Ion for Mammalian Sperm Fertilization Competency. International Journal of Molecular Sciences, 2018, 19, 4097.	4.1	65
45	The postacrosomal assembly of sperm head protein, PAWP, is independent of acrosome formation and dependent on microtubular manchette transport. Developmental Biology, 2007, 312, 471-483.	2.0	64
46	Spermatocyte/Spermatid-specific Thioredoxin-3, a Novel Golgi Apparatus-associated Thioredoxin, Is a Specific Marker of Aberrant Spermatogenesis. Journal of Biological Chemistry, 2004, 279, 34971-34982.	3.4	63
47	Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity, 2013, 110, 57-62.	2.6	63
48	Review: Genomics of bull fertility. Animal, 2018, 12, s172-s183.	3.3	63
49	Increased levels of sperm ubiquitin correlate with semen quality in men from an andrology laboratory clinic population. Human Reproduction, 2004, 19, 628-638.	0.9	59
50	Sperm content of postacrosomal WW binding protein is related to fertilization outcomes in patients undergoing assisted reproductive technology. Fertility and Sterility, 2014, 102, 440-447.	1.0	59
51	The sperm proteasome during sperm capacitation and fertilization. Journal of Reproductive Immunology, 2009, 83, 19-25.	1.9	57
52	Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination. Molecular Reproduction and Development, 2014, 81, 436-449.	2.0	57
53	Sperm–egg adhesion and fusion in mammals. Expert Reviews in Molecular Medicine, 2009, 11, e11.	3.9	52
54	Reduced Fecundity in Female Rats with Surgically Induced Endometriosis and in Their Daughters: A Potential Role for Tissue Inhibitors of Metalloproteinase 11. Biology of Reproduction, 2009, 80, 649-656.	2.7	50

#	Article	IF	CITATIONS
55	Negative biomarker based male fertility evaluation: Sperm phenotypes associated with molecular-level anomalies. Asian Journal of Andrology, 2015, 17, 554.	1.6	49
56	Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development. Journal of Cellular Physiology, 2012, 227, 1592-1603.	4.1	48
57	Regulation of Sperm Capacitation by the 26S Proteasome: An Emerging New Paradigm in Spermatology1. Biology of Reproduction, 2016, 94, 117.	2.7	47
58	Sperm chromatin structure correlates with spontaneous abortion and multiple pregnancy rates in assisted reproduction. Reproductive BioMedicine Online, 2011, 22, 272-276.	2.4	45
59	The Testicular and Epididymal Expression Profile of PLCζ in Mouse and Human Does Not Support Its Role as a Sperm-Borne Oocyte Activating Factor. PLoS ONE, 2012, 7, e33496.	2.5	45
60	On-stage selection of single round spermatids using a vital, mitochondrion-specific fluorescent probe MitoTrackerâ,,¢ and high resolution differential interference contrast microscopy. Human Reproduction, 1999, 14, 2301-2312.	0.9	45
61	Cloning and Developmental Analysis of Murid Spermatid-specific Thioredoxin-2 (SPTRX-2), a Novel Sperm Fibrous Sheath Protein and Autoantigen. Journal of Biological Chemistry, 2003, 278, 44874-44885.	3.4	44
62	Essential role of ubiquitin Câ€ŧerminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. Journal of Cellular Physiology, 2012, 227, 2022-2029.	4.1	44
63	Regulation of Prohibitin Expression During Follicular Development and Atresia in the Mammalian Ovary1. Biology of Reproduction, 2004, 71, 282-290.	2.7	43
64	Novel Aspect of Perinuclear Theca Assembly Revealed by Immunolocalization of Non-Nuclear Somatic Histones During Bovine Spermiogenesis1. Biology of Reproduction, 2004, 71, 1182-1194.	2.7	43
65	Differential Ubiquitination of Stallion Sperm Proteins: Possible Implications for Infertility and Reproductive Seasonality1. Biology of Reproduction, 2003, 68, 688-698.	2.7	41
66	Peroxiredoxin 2 and Peroxidase Enzymatic Activity of Mammalian Spermatozoa1. Biology of Reproduction, 2009, 80, 1168-1177.	2.7	41
67	Transgenic pig carrying green fluorescent proteasomes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6334-6339.	7.1	41
68	Cell and Molecular Biological Challenges of ICSI: ART before Science?. Journal of Law, Medicine and Ethics, 1998, 26, 29-37.	0.9	38
69	F-actin is involved in control of bovine cumulus expansion. Molecular Reproduction and Development, 1995, 41, 521-529.	2.0	37
70	Transgenic rescue of ataxia mice reveals a male-specific sterility defect. Developmental Biology, 2009, 325, 33-42.	2.0	37
71	Ubiquitinâ€activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm–egg coat penetration during porcine fertilization. Journal of Developmental and Physical Disabilities, 2012, 35, 196-210.	3.6	37
72	Regulation of Mitochondrial Genome Inheritance by Autophagy and Ubiquitin-Proteasome System: Implications for Health, Fitness, and Fertility. BioMed Research International, 2014, 2014, 1-16.	1.9	37

#	Article	lF	CITATIONS
73	Mitochondrial sheath movement and detachment in mammalian, but not nonmammalian, sperm induced by disulfide bond reduction. Molecular Reproduction and Development, 1997, 47, 79-86.	2.0	35
74	Neutralizing TIMP1 Restores Fecundity in a Rat Model of Endometriosis and Treating Control Rats with TIMP1 Causes Anomalies in Ovarian Function and Embryo Development1. Biology of Reproduction, 2010, 83, 185-194.	2.7	35
75	Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell and Tissue Research, 2020, 380, 237-262.	2.9	35
76	Sperm ubiquitination in patients with dysplasia of the fibrous sheath. Human Reproduction, 2002, 17, 2119-2127.	0.9	34
77	Role of Ubiquitin C-Terminal Hydrolase-L1 in Antipolyspermy Defense of Mammalian Oocytes1. Biology of Reproduction, 2010, 82, 1151-1161.	2.7	34
78	Expression of mitochondrial transcription factor A (TFAM) during porcine gametogenesis and preimplantation embryo development. Journal of Cellular Physiology, 2008, 217, 529-543.	4.1	33
79	New Approaches to Boar Semen Evaluation, Processing and Improvement. Reproduction in Domestic Animals, 2015, 50, 11-19.	1.4	33
80	Effects of follicle-stimulating hormone, bovine somototrophin and okadaic acid on cumulus expansion and nuclear maturation of Blue fox (Alopex lagopus) oocytes in vitro. Zygote, 1998, 6, 299-309.	1.1	32
81	Arachidonate 15-lipoxygenase and ubiquitin as fertility markers in boars. Theriogenology, 2007, 67, 704-718.	2.1	32
82	Interference with the 19S proteasomal regulatory complex subunit PSMD4 on the sperm surface inhibits sperm-zona pellucida penetration during porcine fertilization. Cell and Tissue Research, 2010, 341, 325-340.	2.9	32
83	Antioxidant supplementation and purification of semen for improved artificial insemination in livestock species. Turkish Journal of Veterinary and Animal Sciences, 2014, 38, 643-652.	0.5	32
84	Identification of genomic variants causing sperm abnormalities and reduced male fertility. Animal Reproduction Science, 2018, 194, 57-62.	1.5	32
85	COVID-19 and human reproduction: A pandemic that packs a serious punch. Systems Biology in Reproductive Medicine, 2021, 67, 3-23.	2.1	32
86	Visualization of Sperm Accessory Structures in the Mammalian Spermatids, Spermatozoa, and Zygotes by Immunofluorescence, Confocal, and Immunoelectron Microscopy., 2004, 253, 059-078.		31
87	Nuclear Remodeling and Reprogramming in Transgenic Pig Production. Experimental Biology and Medicine, 2004, 229, 1120-1126.	2.4	31
88	Clinical adaptation of the sperm ubuquitin tag immunoassay (SUTI): relationship of sperm ubiquitylation with sperm quality in gradient-purified semen samples from 93 men from a general infertility clinic population. Human Reproduction, 2005, 20, 2271-2278.	0.9	31
89	Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes. Reproduction, 2005, 129, 269-282.	2.6	30
90	Proteolytic Activity of the 26S Proteasome Is Required for the Meiotic Resumption, Germinal Vesicle Breakdown, and Cumulus Expansion of Porcine Cumulus-Oocyte Complexes Matured In Vitro1. Biology of Reproduction, 2008, 78, 115-126.	2.7	30

#	Article	IF	CITATIONS
91	Increased disruption of sperm plasma membrane at sperm immobilization promotes dissociation of perinuclear theca from sperm chromatin after intracytoplasmic sperm injection in pigs. Reproduction, 2005, 130, 907-916.	2.6	29
92	Role of proteasomal activity in the induction of acrosomal exocytosis in human spermatozoa. Reproductive BioMedicine Online, 2008, 16, 391-400.	2.4	29
93	High Throughput, Parallel Imaging and Biomarker Quantification of Human Spermatozoa by ImageStream Flow Cytometry. Systems Biology in Reproductive Medicine, 2009, 55, 244-251.	2.1	29
94	Identification of the Inorganic Pyrophosphate Metabolizing, ATP Substituting Pathway in Mammalian Spermatozoa. PLoS ONE, 2012, 7, e34524.	2.5	29
95	Developmental competence of porcine parthenogenetic embryos relative to embryonic chromosomal abnormalities. Molecular Reproduction and Development, 2006, 73, 77-82.	2.0	28
96	Differential Expression of Genes Encoding Constitutive and Inducible 20S Proteasomal Core Subunits in the Testis and Epididymis of Theophylline- or 1,3-Dinitrobenzene-Exposed Rats1. Biology of Reproduction, 2007, 76, 149-163.	2.7	28
97	Co-culture with pig membrana granulosa cells modulates the activity of cdc2 and MAP kinase in maturing cattle oocytes. Zygote, 1996, 4, 247-256.	1.1	27
98	Improved fertilization and embryo development resulting in birth of live piglets after intracytoplasmic sperm injection and in vitro culture in a cysteine-supplemented medium. Theriogenology, 2007, 67, 835-847.	2.1	27
99	Porcine Skin-Derived Stem Cells Can Serve as Donor Cells for Nuclear Transfer. Cloning and Stem Cells, 2009, 11, 101-109.	2.6	27
100	Adaptation of ubiquitin-PNA based sperm quality assay for semen evaluation by a conventional flow cytometer and a dedicated platform for flow cytometric semen analysis. Theriogenology, 2011, 76, 1168-1176.	2.1	27
101	SIRT1-dependent modulation of methylation and acetylation of histone H3 on lysine 9 (H3K9) in the zygotic pronuclei improves porcine embryo development. Journal of Animal Science and Biotechnology, 2017, 8, 83.	5.3	27
102	Sperm Cohort-Specific Zinc Signature Acquisition and Capacitation-Induced Zinc Flux Regulate Sperm-Oviduct and Sperm-Zona Pellucida Interactions. International Journal of Molecular Sciences, 2020, 21, 2121.	4.1	27
103	The Implications of a Paternally Derived Centrosome During Human Fertilization: Consequences for Reproduction and the Treatment of Male Factor Infertility. American Journal of Reproductive Immunology, 1997, 37, 39-49.	1.2	26
104	Biomarker-Based Nanotechnology for the Improvement of Reproductive Performance in Beef and Dairy Cattle. Industrial Biotechnology, 2013, 9, 24-30.	0.8	25
105	Inhibition of 19S proteasomal regulatory complex subunit PSMD8 increases polyspermy during porcine fertilization in vitro. Journal of Reproductive Immunology, 2010, 84, 154-163.	1.9	24
106	Modifications of the 26S proteasome during boar sperm capacitation. Cell and Tissue Research, 2018, 372, 591-601.	2.9	24
107	Boar semen improvement through sperm capacitation management, with emphasis on zinc ion homeostasis. Theriogenology, 2019, 137, 50-55.	2.1	24
108	Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells, 2021, 10, 133.	4.1	24

#	Article	IF	CITATIONS
109	Ubiquitin A-52 residue ribosomal protein fusion product 1 ($\langle i \rangle$ Uba52 $\langle i \rangle$) is essential for preimplantation embryo development. Biology Open, 2018, 7, .	1.2	23
110	Compartmentalization of the proteasome-interacting proteins during sperm capacitation. Scientific Reports, 2019, 9, 12583.	3.3	23
111	Sperm-borne glutathione-S-transferase omega 2 accelerates the nuclear decondensation of spermatozoa during fertilization in miceâ€. Biology of Reproduction, 2019, 101, 368-376.	2.7	23
112	Pig membrana granulosa cells prevent resumption of meiosis in cattle oocytes. Molecular Reproduction and Development, 1993, 34, 58-64.	2.0	22
113	Nuclear remodeling after SCNT: a contractor's nightmare. Trends in Biotechnology, 2004, 22, 205-208.	9.3	22
114	Discovery of putative oocyte quality markers by comparative ExacTag proteomics. Proteomics - Clinical Applications, 2010, 4, 337-351.	1.6	22
115	Cell Autonomous and Nonautonomous Function of CUL4B in Mouse Spermatogenesis. Journal of Biological Chemistry, 2016, 291, 6923-6935.	3.4	22
116	Altered epididymal sperm maturation and cytoplasmic droplet migration in subfertile male Alox15 mice. Cell and Tissue Research, 2010, 340, 569-581.	2.9	21
117	The developmental origin and compartmentalization of glutathione-s-transferase omega 2 isoforms in the perinuclear theca of eutherian spermatozoaâ€. Biology of Reproduction, 2017, 97, 612-621.	2.7	21
118	Activation method does not alter abnormal placental gene expression and development in cloned pigs. Molecular Reproduction and Development, 2010, 77, 1016-1030.	2.0	20
119	Identification and characterization of RING-finger ubiquitin ligase UBR7 in mammalian spermatozoa. Cell and Tissue Research, 2014, 356, 261-278.	2.9	20
120	In Utero and Postnatal Exposure to High Fat, High Sucrose Diet Suppressed Testis Apoptosis and Reduced Sperm Count. Scientific Reports, 2018, 8, 7622.	3.3	20
121	H3K4me2 accompanies chromatin immaturity in human spermatozoa: an epigenetic marker for sperm quality assessment. Systems Biology in Reproductive Medicine, 2020, 66, 3-11.	2.1	20
122	Ubiquitin-proteasome system participates in the de-aggregation of spermadhesins and DQH protein during boar sperm capacitation. Reproduction, 2019, 157, 283-295.	2.6	19
123	WBP2 shares a common location in mouse spermatozoa with WBP2NL/PAWP and like its descendent is a candidate mouse oocyte activating factor. Biology of Reproduction, 2018, 99, 1171-1183.	2.7	18
124	Mechanism of sperm-zona pellucida penetration during mammalian fertilization: 26S proteasome as a candidate egg coat lysin. Society of Reproduction and Fertility Supplement, 2007, 63, 385-408.	0.2	18
125	Sperm-Surface ATP in Boar Spermatozoa is Required for Fertilization: Relevance to Sperm Proteasomal Function. Systems Biology in Reproductive Medicine, 2009, 55, 85-96.	2.1	17
126	The domestic pig as a model for the study of mitochondrial inheritance. Cell and Tissue Research, 2020, 380, 263-271.	2.9	17

#	Article	IF	CITATIONS
127	Role of glucose in cloned mouse embryo development. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E798-E809.	3.5	16
128	The activation of the chymotrypsin-like activity of the proteasome is regulated by soluble adenyl cyclase/cAMP/protein kinase A pathway and required for human sperm capacitation. Molecular Human Reproduction, 2019, 25, 587-600.	2.8	16
129	Re: Is PAWP the ′real′ sperm factor?. Asian Journal of Andrology, 2014, 17, 446-9.	1.6	16
130	Accumulation of the Proteolytic Marker Peptide Ubiquitin in the Trophoblast of Mammalian Blastocysts. Cloning and Stem Cells, 2001, 3, 157-161.	2.6	15
131	Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development. Reproduction, Fertility and Development, 2015, 27, 1154.	0.4	15
132	The perforatorium and postacrosomal sheath of rat spermatozoa share common developmental origins and protein constituentsâ€. Biology of Reproduction, 2019, 100, 1461-1472.	2.7	15
133	Semen Levels of Spermatid-Specific Thioredoxin-3 Correlate with Pregnancy Rates in ART Couples. PLoS ONE, 2013, 8, e61000.	2.5	14
134	The ART and science of sperm mitophagy. Autophagy, 2016, 12, 2510-2511.	9.1	14
135	Post-fertilisation sperm mitophagy: the tale of Mitochondrial Eve and Steve. Reproduction, Fertility and Development, 2018, 30, 56.	0.4	14
136	Ultrastructural cytochemistry of the nucleus and nucleolus in growing rabbit oocytes. Biology of the Cell, 1993, 77, 173-180.	2.0	13
137	Relative Levels of Semen Platelet Activating Factor-Receptor (PAFr) and Ubiquitin in Yearling Bulls With High Content of Semen White Blood Cells: Implications for Breeding Soundness Evaluation. Journal of Andrology, 2006, 28, 92-108.	2.0	13
138	An Exploration of Current and Perspective Semen Analysis and Sperm Selection for Livestock Artificial Insemination. Animals, 2021, 11, 3563.	2.3	13
139	Mammalian spermatogenesis and sperm structure: anatomical and compartmental analysis. , 2006, , 1-30.		12
140	Sperm proteins ODF2 and PAWP as markers of fertility in breeding bulls. Cell and Tissue Research, 2022, 387, 159-171.	2.9	12
141	COP9 signalosome complex subunit 5, an IFT20 binding partner, is essential to maintain male germ cell survival and acrosome biogenesisâ€. Biology of Reproduction, 2020, 102, 233-247.	2.7	10
142	Relationship between the Length of Sperm Tail Mitochondrial Sheath and Fertility Traits in Boars Used for Artificial Insemination. Antioxidants, 2020, 9, 1033.	5.1	10
143	Deubiquitinating Enzymes in Oocyte Maturation, Fertilization and Preimplantation Embryo Development. Advances in Experimental Medicine and Biology, 2014, 759, 89-110.	1.6	10
144	Zinc is a master-regulator of sperm function associated with binding, motility, and metabolic modulation during porcine sperm capacitation. Communications Biology, 2022, 5, .	4.4	10

#	Article	IF	CITATIONS
145	Biogenesis of the sperm head perinuclear theca during human spermiogenesis. Fertility and Sterility, 2009, 92, 1472-1473.	1.0	9
146	Mitochondrial DNA content of mature spermatozoa and oocytes in the genetic model Drosophila. Cell and Tissue Research, 2013, 353, 195-200.	2.9	9
147	GSTO2 Isoforms Participate in the Oxidative Regulation of the Plasmalemma in Eutherian Spermatozoa during Capacitation. Antioxidants, 2019, 8, 601.	5.1	9
148	Comparative Histology and Subcellular Structure of Mammalian Spermatogenesis and Spermatozoa., 0, , 81-98.		8
149	Core Histones Are Constituents of the Perinuclear Theca of Murid Spermatozoa: An Assessment of Their Synthesis and Assembly during Spermiogenesis and Function after Gametic Fusion. International Journal of Molecular Sciences, 2021, 22, 8119.	4.1	8
150	Mammalian Cell-Free System Recapitulates the Early Events of Post-Fertilization Sperm Mitophagy. Cells, 2021, 10, 2450.	4.1	8
151	Ultrastructural aspects of mammalian fertilization: new discoveries and inspirations from the work of Daniel Szöllösi. Reproduction, Nutrition, Development, 1998, 38, 629-641.	1.9	7
152	Reciprocal surface expression of arylsulfatase A and ubiquitin in normal and defective mammalian spermatozoa. Cell and Tissue Research, 2020, 379, 561-576.	2.9	7
153	The Ubiquitin-Proteasome System Does Not Regulate the Degradation of Porcine \hat{l}^2 -Microseminoprotein during Sperm Capacitation. International Journal of Molecular Sciences, 2020, 21, 4151.	4.1	7
154	NEDD4-like ubiquitin ligase 2 protein (NEDL2) in porcine spermatozoa, oocytes, and preimplantation embryos and its role in oocyte fertilization. Biology of Reproduction, 2021, 104, 117-129.	2.7	7
155	Progesterone induces porcine sperm release from oviduct glycans in a proteasome-dependent manner. Reproduction, 2021, 161, 449-457.	2.6	7
156	Improved Murine Blastocyst Quality and Development in a Single Culture Medium Compared to Sequential Culture Media. Reproductive Sciences, 2016, 23, 310-317.	2.5	6
157	Effect of intra-uterine growth restriction on long-term fertility in boars. Reproduction, Fertility and Development, 2017, 29, 374.	0.4	6
158	Porcine Cell-Free System to Study Mammalian Sperm Mitophagy. Methods in Molecular Biology, 2018, 1854, 197-207.	0.9	6
159	Sperm-Specific WW-Domain-Binding Proteins. , 0, , 157-176.		5
160	Sperm content of TXNDC8 reflects sperm chromatin structure, pregnancy establishment, and incidence of multiple births after ART. Systems Biology in Reproductive Medicine, 2020, 66, 311-321.	2.1	5
161	Hyperactivation is sufficient to release porcine sperm from immobilized oviduct glycans. Scientific Reports, 2022, 12, 6446.	3.3	5
162	Carbohydrate-Mediated Binding and Induction of Acrosomal Exocytosis in a Boar Sperm-Somatic Cell Adhesion Model 1. Biology of Reproduction, 2010, 83, 623-634.	2.7	4

#	Article	IF	CITATIONS
163	Pharmacologic treatment with CPI-613 and PS48 decreases mitochondrial membrane potential and increases quantity of autolysosomes in porcine fibroblasts. Scientific Reports, 2019, 9, 9417.	3.3	4
164	Semen Parameters of Fertile Guinea Pigs (Cavia porcellus) Collected by Transrectal Electroejaculation. Animals, 2020, 10, 767.	2.3	4
165	Potential Use of Tannin Extracts as Additives in Semen Destined for Cryopreservation: A Review. Animals, 2022, 12, 1130.	2.3	4
166	Sperm GIRK2-Containing K ⁺ Inward Rectifying Channels Participate in Sperm Capacitation and Fertilization. Systems Biology in Reproductive Medicine, 2011, 57, 296-308.	2.1	3
167	Key Features of Genomic Imprinting during Mammalian Spermatogenesis: Perspectives for Human assisted Reproductive Therapy: A Review. Anatomy & Physiology: Current Research, 2016, 6, .	0.1	3
168	Reproductive systems biology tackles global issues of population growth, food safety and reproductive health. Cell and Tissue Research, 2016, 363, 1-5.	2.9	3
169	Bioethics in human embryology: the double-edged sword of embryo research. Systems Biology in Reproductive Medicine, 2022, 68, 169-179.	2.1	3
170	A Non-Synonymous Point Mutation in a WD-40 Domain Repeat of EML5 Leads to Decreased Bovine Sperm Quality and Fertility. Frontiers in Cell and Developmental Biology, 2022, 10, 872740.	3.7	3
171	Sperm Redox System Equilibrium: Implications for Fertilization and Male Fertility. Advances in Experimental Medicine and Biology, 2022, , 345-367.	1.6	3
172	Sperm Capacitation, the Acrosome Reaction, and Fertilization. , 2010, , 389-421.		2
173	Spermatozoa: the good, the bad and the ugly. Molecular Reproduction and Development, 2011, 78, 67-67.	2.0	2
174	Biomarker-Based Flow Cytometric Semen Analysis for Male Infertility Diagnostics and Clinical Decision Making in ART., 2015,, 33-51.		2
175	Pig Overview. , 2018, , 501-507.		2
176	Sperm Proteasome as a Putative Egg Coat Lysin in Mammals. , 2014, , 441-463.		2
177	Cell biology solves mysteries of reproduction. Cell and Tissue Research, 2012, 349, 631-633.	2.9	1
178	Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington's Disease. International Journal of Molecular Sciences, 2022, 23, 7163.	4.1	1
179	Establishing New Paradigms while Reexamining the Old Ones. Systems Biology in Reproductive Medicine, 2010, 56, 331-333.	2.1	0
180	Gamete Binding and Fusion. , 2011, , 185-201.		0

#	Article	IF	CITATIONS
181	The real Pac-Man. Molecular Reproduction and Development, 2012, 79, 741-741.	2.0	0
182	Of Mitochondrial Eve and Steve. Molecular Reproduction and Development, 2016, 83, 5-5.	2.0	0
183	Identification of 19S Proteasomal Regulatory Complex Subunits Involved in Sperm-Zona Pellucida Interactions During Porcine Fertilization Biology of Reproduction, 2008, 78, 69-69.	2.7	O
184	Anti-Inflammatory Protein Neuregulin-1B (NRG1 \hat{l}^2) Is Identified in Ovarian Follicular Fluid and Microvesicles of Human and Porcine: A Possible Autocrine-Paracrine Function During Ovulation Biology of Reproduction, 2012, 87, 579-579.	2.7	0
185	Cellular and Molecular Events after ICSI in Clinically Relevant Animal Models. , 2021, , 103-113.		0