
Fang Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6811791/publications.pdf Version: 2024-02-01

FANC DA

#	Article	IF	CITATIONS
1	Opportunities and Challenges of High-Energy Lithium Metal Batteries for Electric Vehicle Applications. ACS Energy Letters, 2020, 5, 3140-3151.	17.4	196
2	Minimized Volume Expansion in Hierarchical Porous Silicon upon Lithiation. ACS Applied Materials & Interfaces, 2019, 11, 13257-13263.	8.0	51
3	Robust Metallic Lithium Anode Protection by the Molecularâ€Layerâ€Deposition Technique. Small Methods, 2018, 2, 1700417.	8.6	84
4	Hierarchical electrode architectures for high energy lithium-chalcogen rechargeable batteries. Nano Energy, 2018, 51, 668-679.	16.0	13
5	Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 4231-4235.	13.8	149
6	Activated Carbon from Biomass Transfer for Highâ€Energy Density Lithiumâ€lon Supercapacitors. Advanced Energy Materials, 2016, 6, 1600802.	19.5	229
7	Roomâ€Temperature Synthesis of Mesoporous Sn/SnO ₂ Composite as Anode for Sodiumâ€Ion Batteries. European Journal of Inorganic Chemistry, 2016, 2016, 1950-1954.	2.0	23
8	Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 4303-4307.	2.0	35
9	Self-Templated Synthesis of Mesoporous Carbon from Carbon Tetrachloride Precursor for Supercapacitor Electrodes. ACS Applied Materials & amp; Interfaces, 2016, 8, 6779-6783.	8.0	75
10	Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy and Environmental Science, 2016, 9, 102-106.	30.8	910
11	Introduction to Electrochemical Energy Storage and Conversion. Electrochemical Energy Storage and Conversion, 2015, , 3-32.	0.0	1
12	Rationally Designed n–n Heterojunction with Highly Efficient Solar Hydrogen Evolution. ChemSusChem, 2015, 8, 1218-1225.	6.8	87
13	Inward lithium-ion breathing of hierarchically porous silicon anodes. Nature Communications, 2015, 6, 8844.	12.8	217
14	Homogenously hexagonal prismatic AgBiS ₂ nanocrystals: controlled synthesis and application in quantum dot-sensitized solar cells. CrystEngComm, 2015, 17, 1902-1905.	2.6	34
15	Water Soluble CuInSe ₂ Nanoplates: Controlled Synthesis, Photoelectric Response and Electrocatalytic Reduction of Polysulfides. ChemNanoMat, 2015, 1, 52-57.	2.8	5
16	A Freeâ€Standing and Ultralongâ€Life Lithiumâ€Selenium Battery Cathode Enabled by 3D Mesoporous Carbon/Graphene Hierarchical Architecture. Advanced Functional Materials, 2015, 25, 455-463.	14.9	186
17	Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nature Communications, 2014, 5, 3605.	12.8	212
18	Titanium nitride coating to enhance the performance of silicon nanoparticles as a lithium-ion battery anode. Journal of Materials Chemistry A, 2014, 2, 10375-10378.	10.3	79

Fang Dai

#	Article	IF	CITATIONS
19	A study of a fluorine substituted phenyl based complex as a 3 V electrolyte for Mg batteries. Journal of Materials Chemistry A, 2014, 2, 15488-15494.	10.3	17
20	Flexible self-standing graphene–Se@CNT composite film as a binder-free cathode for rechargeable Li–Se batteries. Journal of Power Sources, 2014, 263, 85-89.	7.8	120
21	Bis(2,2,2-trifluoroethyl) Ether As an Electrolyte Co-solvent for Mitigating Self-Discharge in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2014, 6, 8006-8010.	8.0	161
22	Improved electrolyte and its application in LiNi1/3Mn1/3Co1/3O2–Graphite full cells. Journal of Power Sources, 2014, 268, 37-44.	7.8	16
23	Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries. Nano Energy, 2014, 6, 211-218.	16.0	155
24	Microâ€sized Si Composite with Interconnected Nanoscale Building Blocks as Highâ€Performance Anodes for Practical Application in Lithiumâ€lon Batteries. Advanced Energy Materials, 2013, 3, 295-300.	19.5	412
25	Improved rate capability of Si–C composite anodes by boron doping for lithium-ion batteries. Electrochemistry Communications, 2013, 36, 29-32.	4.7	71
26	Exceptional electrochemical performance of rechargeable Li–S batteries with a polysulfide-containing electrolyte. RSC Advances, 2013, 3, 3540.	3.6	87
27	The Direct Oxidative Addition of O ₂ to a Mononuclear Cr(I) Complex Is Spin Forbidden. Journal of the American Chemical Society, 2013, 135, 16774-16776.	13.7	32
28	Influence of Silicon Nanoscale Building Blocks Size and Carbon Coating on the Performance of Micro‧ized Si–C Composite Liâ€Ion Anodes. Advanced Energy Materials, 2013, 3, 1507-1515.	19.5	169
29	Amorphous Si/SiOx/SiO2 nanocomposites via facile scalable synthesis as anode materials for Li-ion batteries with long cycling life. RSC Advances, 2012, 2, 12710.	3.6	47