Xavier Turon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6811789/publications.pdf

Version: 2024-02-01

198 papers 11,324 citations

25034 57 h-index 94 g-index

205 all docs

205 docs citations

205 times ranked 8797 citing authors

#	Article	IF	Citations
1	The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, 2010, 5, e11842.	2.5	1,439
2	The Magnitude of Global Marine Species Diversity. Current Biology, 2012, 22, 2189-2202.	3.9	797
3	Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Diversity and Distributions, 2015, 21, 755-768.	4.1	239
4	Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions. Microscopy Research and Technique, 2003, 62, 279-299.	2.2	198
5	Stability of Sponge-Associated Bacteria over Large Seasonal Shifts in Temperature and Irradiance. Applied and Environmental Microbiology, 2012, 78, 7358-7368.	3.1	183
6	DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers. PeerJ, 2018, 6, e4705.	2.0	168
7	Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons. PLoS ONE, 2015, 10, e0139633.	2.5	163
8	Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Estuarine, Coastal and Shelf Science, 2017, 191, 171-187.	2.1	148
9	An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evolutionary Biology, 2009, 9, 187.	3.2	133
10	A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biology, 2018, 16, 39.	3.8	133
11	Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata, Echinoidea). Molecular Ecology, 2004, 13, 3317-3328.	3.9	125
12	Echinodermata:Echinoidea in two contrasting habitats. Marine Ecology - Progress Series, 1995, 122, 179-191.	1.9	125
13	Seasonal and small-scale spatial variability of herbivory pressure on the temperate seagrass Posidonia oceanica. Marine Ecology - Progress Series, 2005, 301, 95-107.	1.9	121
14	Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia, 2003, 135, 91-101.	2.0	116
15	Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Marine Biology, 2004, 144, 31-35.	1.5	113
16	Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Molecular Ecology, 2004, 13, 511-522.	3.9	109
17	Growth dynamics and mortality of the encrusting spongeCrambe crambe(Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Functional Ecology, 1998, 12, 631-639.	3.6	106
18	Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Molecular Ecology, 2004, 13, 109-122.	3.9	106

#	Article	IF	CITATIONS
19	Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell and Tissue Research, 2000, 301, 311-322.	2.9	103
20	Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ, 2016, 4, e2807.	2.0	103
21	Cyanobacterial Diversity and a New Acaryochloris-Like Symbiont from Bahamian Sea-Squirts. PLoS ONE, 2011, 6, e23938.	2.5	101
22	Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. , 1997, 278, 22-36.		100
23	Characterising invasion processes with genetic data: an Atlantic clade of Clavelina lepadiformis (Ascidiacea) introduced into Mediterranean harbours. Hydrobiologia, 2003, 503, 29-35.	2.0	100
24	How do reproductive output, larval behaviour, and recruitment contribute to adult spatial patterns in Mediterranean encrusting sponges?. Marine Ecology - Progress Series, 1998, 167, 137-148.	1.9	99
25	Silica deposition in Demosponges: spiculogenesis in Crambe crambe. Cell and Tissue Research, 2000, 301, 299-309.	2.9	95
26	Growth and population structure of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Marine Ecology - Progress Series, 1995, 122, 193-204.	1.9	95
27	Antimicrobial activity and surface bacterial film in marine sponges. Journal of Experimental Marine Biology and Ecology, 1994, 179, 195-205.	1.5	93
28	Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biological Invasions, 2015, 17, 869-885.	2.4	92
29	Larval abundance, recruitment and early mortality in Paracentrotus lividus (Echinoidea). Interannual variability and plankton-benthos coupling. Marine Ecology - Progress Series, 1998, 172, 239-251.	1.9	90
30	Host rules: spatial stability of bacterial communities associated with marine sponges (<i>lrcinia</i> spp.) in the Western Mediterranean Sea. FEMS Microbiology Ecology, 2013, 86, 268-276.	2.7	88
31	Down under the tunic: bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians. ISME Journal, 2014, 8, 575-588.	9.8	88
32	Seasonal Patterns of Toxicity in Benthic Invertebrates: The Encrusting Sponge Crambe crambe (Poecilosclerida). Oikos, 1996, 75, 33.	2.7	86
33	Tough Adults, Frail Babies: An Analysis of Stress Sensitivity across Early Life-History Stages of Widely Introduced Marine Invertebrates. PLoS ONE, 2012, 7, e46672.	2.5	84
34	Location of toxicity within the Mediterranean sponge Crambe crambe (Demospongiae:) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Ti	F 50 ₈₃ 142 Td (P
35	From metabarcoding to metaphylogeography: separating the wheat from the chaff. Ecological Applications, 2020, 30, e02036.	3.8	80
36	Settlement and recruitment of the sea urchin Paracentrotus lividus in two contrasting habitats in the Mediterranean. Marine Ecology - Progress Series, 2004, 282, 173-184.	1.9	80

#	Article	IF	CITATIONS
37	Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe,) Tj ETQq1	1 0.784314	rgBT /Overlo
38	Cryptic species of Clavelina (Ascidiacea) in two different habitats: harbours and rocky littoral zones in the northwestern Mediterranean. Marine Biology, 2001, 139, 455-462.	1.5	77
39	Multiple Functions for Secondary Metabolites in Encrusting Marine Invertebrates. Journal of Chemical Ecology, 1997, 23, 1527-1547.	1.8	76
40	Low densities of sea urchins influence the structure of algal assemblages in the western Mediterranean. Journal of Sea Research, 1998, 39, 281-290.	1.6	75
41	Sublethal effects of contamination on the Mediterranean sponge Crambe crambe: metal accumulation and biological responses. Marine Pollution Bulletin, 2003, 46, 1273-1284.	5.0	75
42	A specific mix of generalists: bacterial symbionts in Mediterranean Ircinia spp FEMS Microbiology Ecology, 2012, 79, 619-637.	2.7	75
43	Harbor networks as introduction gateways: contrasting distribution patterns of native and introduced ascidians. Biological Invasions, 2015, 17, 1623-1638.	2.4	73
44	Feeding deterrence in sponges. The role of toxicity, physical defenses, energetic contents, and life-history stage Journal of Experimental Marine Biology and Ecology, 1996, 205, 187-204.	1.5	72
45	Phylogeography and speciation of colour morphs in the colonial ascidian Pseudodistoma crucigaster. Molecular Ecology, 2004, 13, 3125-3136.	3.9	72
46	The Whereabouts of an Ancient Wanderer: Global Phylogeography of the Solitary Ascidian Styela plicata. PLoS ONE, 2011, 6, e25495.	2.5	72
47	New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). Cell and Tissue Research, 1996, 285, 519-527.	2.9	71
48	Effects of herbivores on a Posidonia oceanica seagrass meadow: importance of epiphytes. Marine Ecology - Progress Series, 2005, 287, 115-125.	1.9	69
49	Dispersal strategies in sponge larvae: integrating the life history of larvae and the hydrologic component. Oecologia, 2006, 149, 174-184.	2.0	68
50	Phylogeography of the widespread marine invader <i>Microcosmus squamiger</i> (Ascidiacea) reveals high genetic diversity of introduced populations and nonâ€independent colonizations. Diversity and Distributions, 2008, 14, 818-828.	4.1	68
51	Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution. Marine Biology, 2000, 137, 783-790.	1.5	67
52	A wolf in sheep's clothing: carnivory in dominant sea urchins in the Mediterranean. Marine Ecology - Progress Series, 2011, 441, 117-128.	1.9	67
53	Till Death Do Us Part: Stable Sponge-Bacteria Associations under Thermal and Food Shortage Stresses. PLoS ONE, 2013, 8, e80307.	2.5	66
54	Sponges as biomonitors of heavy metals in spatial and temporal surveys in northwestern Mediterranean: Multispecies comparison. Environmental Toxicology and Chemistry, 2007, 26, 2430-2439.	4.3	65

#	Article	IF	CITATIONS
55	Two markers and one history: phylogeography of the edible common sea urchin Paracentrotus lividus in the Lusitanian region. Marine Biology, 2008, 154, 137-151.	1.5	64
56	Ascidian molecular phylogeny inferred from mtDNA data with emphasis on the Aplousobranchiata. Molecular Phylogenetics and Evolution, 2004, 33, 309-320.	2.7	61
57	Benthic assemblages in two Mediterranean caves: species diversity and coverage as a function of abiotic parameters and geographic distance. Journal of the Marine Biological Association of the United Kingdom, 2004, 84, 557-572.	0.8	61
58	Secondary metabolite and inorganic contents in Cystodytes sp. (Ascidiacea): temporal patterns and association with reproduction and growth. Marine Biology, 2007, 151, 293-299.	1.5	60
59	Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities. Scientific Reports, 2013, 3, 3197.	3.3	59
60	Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. Global Ecology and Biogeography, 2014, 23, 76-88.	5.8	59
61	Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. Journal of Experimental Marine Biology and Ecology, 2013, 449, 304-311.	1.5	58
62	Growth and survival of several asoidian species from lhe northwestern Mediterranean. Marine Ecology - Progress Series, 1992, 82, 235-247.	1.9	58
63	To denoise or to cluster, that is not the question: optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinformatics, 2021, 22, 177.	2.6	57
64	Patterns of resource allocation to somatic, defensive, and reproductive functions in the Mediterranean encrusting sponge Crambe crambe (Demospongiae, Poecilosclerida). Marine Ecology - Progress Series, 1995, 124, 159-170.	1.9	56
65	The dynamics of sponge larvae assemblages from northwestern Mediterranean nearshore bottoms. Journal of Plankton Research, 2005, 27, 249-262.	1.8	55
66	Genetic structure of the star sea squirt, Botryllus schlosseri, introduced in southern European harbours. Molecular Ecology, 2006, 15, 3957-3967.	3.9	55
67	How do morphotypes and chemotypes relate to genotypes? The colonial ascidian Cystodytes (Polycitoridae). Zoologica Scripta, 2005, 34, 3-14.	1.7	54
68	Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 2009, 50, 560-570.	2.7	52
69	Differential element assimilation by sea urchins Paracentrotus lividus in seagrass beds: implications for trophic interactions. Marine Ecology - Progress Series, 2006, 306, 125-131.	1.9	49
70	Natural variation of toxicity in encrusting spongeCrambe crambe (Schmidt) in relation to size and environment. Journal of Chemical Ecology, 1995, 21, 1931-1946.	1.8	48
71	Title is missing!. Hydrobiologia, 1997, 355, 77-89.	2.0	48
72	Cryptic divergence and strong population structure in the colonial invertebrate Pycnoclavella communis (Ascidiacea) inferred from molecular data. Zoology, 2008, 111, 163-178.	1.2	48

#	Article	IF	Citations
73	Tracking Invasion Histories in the Sea: Facing Complex Scenarios Using Multilocus Data. PLoS ONE, 2012, 7, e35815.	2.5	48
74	Stress levels over time in the introduced ascidian Styela plicata: the effects of temperature and salinity variations on hsp70 gene expression. Cell Stress and Chaperones, 2012, 17, 435-444.	2.9	47
75	Spread of Microcosmus squamiger (Ascidiacea: Pyuridae) in the Mediterranean Sea and adjacent waters. Journal of Experimental Marine Biology and Ecology, 2007, 342, 185-188.	1.5	46
76	Marine biomonitoring with eDNA: Can metabarcoding of water samples cut it as a tool for surveying benthic communities?. Molecular Ecology, 2021, 30, 3175-3188.	3.9	46
77	An approach to the ecological significance of chemically mediated bio-activity in Mediterranean benthic communities. Marine Ecology - Progress Series, 1991, 70, 175-188.	1.9	46
78	Natural or Naturalized? Phylogeography Suggests That the Abundant Sea Urchin Arbacia lixula Is a Recent Colonizer of the Mediterranean. PLoS ONE, 2012, 7, e45067.	2.5	45
79	ENDOSYMBIOTIC CALCIFYING BACTERIA: A NEW CUE TO THE ORIGIN OF CALCIFICATION IN METAZOA?. Evolution; International Journal of Organic Evolution, 2012, 66, 2993-2999.	2.3	45
80	Year-round reproduction in a seasonal sea: biological cycle of the introduced ascidian Styela plicata in the Western Mediterranean. Marine Biology, 2013, 160, 221-230.	1.5	45
81	Ongoing expansion of the worldwide invader Didemnum vexillum (Ascidiacea) in the Mediterranean Sea: high plasticity of its biological cycle promotes establishment in warm waters. Biological Invasions, 2015, 17, 2075-2085.	2.4	45
82	Small-scale association measures in epibenthic communities as a clue for allelochemical interactions. Oecologia, 1996, 108, 351-360.	2.0	44
83	Population dynamics and life cycle of the introduced ascidian Microcosmus squamiger in the Mediterranean Sea. Biological Invasions, 2009, 11, 2181-2194.	2.4	44
84	Cryptic Diversity and Database Errors Challenge Non-indigenous Species Surveys: An Illustration With Botrylloides spp. in the English Channel and Mediterranean Sea. Frontiers in Marine Science, 2019, 6, .	2.5	44
85	Mass recruitment of Ophiothrix fragilis (Ophiuroidea) on sponges:settlement patterns and post-settlement dynamics. Marine Ecology - Progress Series, 2000, 200, 201-212.	1.9	44
86	Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. Zoologica Scripta, 2013, 42, 151-169.	1.7	43
87	Larval settlement behaviour in six gregarious ascidians in relation to adult distribution. Marine Ecology - Progress Series, 2010, 418, 151-163.	1.9	43
88	Defence mechanisms of adults and larvae of colonial ascidians: patterns of palatability and toxicity. Marine Ecology - Progress Series, 2002, 235, 103-115.	1.9	41
89	Contrasting biological traits of Clavelina lepadiformis (Ascidiacea) populations from inside and outside harbours in the western Mediterranean. Marine Ecology - Progress Series, 2002, 244, 125-137.	1.9	41
90	Accelerated Evolutionary Rate of Housekeeping Genes in Tunicates. Journal of Molecular Evolution, 2010, 71, 153-167.	1.8	40

#	Article	lF	Citations
91	Ascidian Mitogenomics: Comparison of Evolutionary Rates in Closely Related Taxa Provides Evidence of Ongoing Speciation Events. Genome Biology and Evolution, 2014, 6, 591-605.	2.5	39
92	Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biological Journal of the Linnean Society, 2003, 78, 429-438.	1.6	38
93	Qualitative variation of alkaloids in color morphs of Cystodytes (Ascidiacea). Biochemical Systematics and Ecology, 2005, 33, 1107-1119.	1.3	38
94	Chemical and physical defenses against predators in Cystodytes (Ascidiacea). Journal of Experimental Marine Biology and Ecology, 2006, 332, 27-36.	1.5	38
95	Periods of non-feeding in Polysyncraton lacazei (Ascidiacea: Didemnidae): a rejuvenative process?. Marine Biology, 1992, 112, 647-655.	1.5	37
96	Cell types, microsymbionts, and pyridoacridine distribution in the tunic of three color morphs of the genus Cystodytes (Ascidiacea, Polycitoridae). Invertebrate Biology, 2005, 124, 355-369.	0.9	37
97	Ultrastructure and dispersal potential of sponge larvae: tufted <i>versus</i> evenly ciliated parenchymellae. Marine Ecology, 2008, 29, 280-297.	1.1	37
98	Microsatellite markers reveal shallow genetic differentiation between cohorts of the common sea urchin <i>Paracentrotus lividus</i> (Lamarck) in northwest Mediterranean. Molecular Ecology, 2009, 18, 3036-3049.	3.9	37
99	Time and space: genetic structure of the cohorts of the common sea urchin Paracentrotus lividus in Western Mediterranean. Marine Biology, 2012, 159, 187-197.	1.5	37
100	Bottlenecks and loss of genetic diversity: spatio-temporal patterns of genetic structure in an ascidian recently introduced in Europe. Marine Ecology - Progress Series, 2012, 451, 93-105.	1.9	37
101	Ultrastructure, Molecular Phylogenetics, and Chlorophyll a Content of Novel Cyanobacterial Symbionts in Temperate Sponges. Microbial Ecology, 2012, 64, 771-783.	2.8	36
102	The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Marine Biology, 2013, 160, 3157-3168.	1.5	36
103	Trends in space occupation by the encrusting sponge Crambe crambe: variation in shape as a function of size and environment. Marine Biology, 1994, 121, 301-307.	1.5	35
104	Non-lethal effects of an invasive species in the marine environment: the importance of early life-history stages. Oecologia, 2009, 159, 873-882.	2.0	34
105	Morphology and ultrastructure of the swimming larvae of <i>Crambe crambe</i> (Demospongiae,) Tj ETQq1 1 0.	.784314 rş	gBŢ JOverloc
106	Population genetics, phylogeography and speciation of Cystodytes (Ascidiacea) in the western Mediterranean Sea. Biological Journal of the Linnean Society, 2006, 88, 203-214.	1.6	33
107	Reproductive Cycles of the Ascidians Microcosmus sabatieri and Halocynthia papillosa in the Northwestern Mediterranean. Marine Ecology, 1992, 13, 363-373.	1.1	32
108	Sources of Secondary Metabolite Variation in Dysidea avara (Porifera: Demospongiae): The Importance of Having Good Neighbors. Marine Drugs, 2013, 11, 489-503.	4.6	32

7

#	Article	IF	Citations
109	Temporal stability of bacterial symbionts in a temperate ascidian. Frontiers in Microbiology, 2015, 6, 1022.	3.5	32
110	Molecular and organism biomarkers of copper pollution in the ascidian Pseudodistoma crucigaster. Marine Pollution Bulletin, 2004, 48, 759-767.	5.0	30
111	Impacts of climate change on geographical distributions of invasive ascidians. Marine Environmental Research, 2020, 159, 104993.	2.5	30
112	Stock Evaluation of Three Littoral Echinoid Species on the Catalan Coast North-Western Mediterranean. Marine Ecology, 1998, 19, 163-177.	1.1	29
113	Mixed but not admixed: a spatial analysis of genetic variation of an invasive ascidian on natural and artificial substrates. Marine Biology, 2013, 160, 1645-1660.	1.5	29
114	Life cycles and growth rates of two morphotypes of Cystodytes (Ascidiacea) in the western Mediterranean. Marine Ecology - Progress Series, 2005, 296, 219-228.	1.9	29
115	Seasonal and spatial variation of species toxicity in Mediterranean seaweed communities: correlation to biotic and abiotic factors. Marine Ecology - Progress Series, 2004, 282, 73-85.	1.9	28
116	Metabarcoding Techniques for Assessing Biodiversity of Marine Animal Forests., 2017,, 445-473.		28
117	Chemically-mediated interactions in benthic organisms: the chemical ecology of Crambe crambe (Porifera, Poecilosclerida)., 1997,, 77-89.		28
118	The Southern Hemisphere ascidian Asterocarpa humilis is unrecognised but widely established in NW France and Great Britain. Biological Invasions, 2013, 15, 253-260.	2.4	27
119	Single zooids, multiple loci: independent colonisations revealed by population genomics of a global invader. Biological Invasions, 2019, 21, 3575-3592.	2.4	27
120	DNA Metabarcoding of Deep-Sea Sediment Communities Using COI: Community Assessment, Spatio-Temporal Patterns and Comparison with 18S rDNA. Diversity, 2020, 12, 123.	1.7	25
121	Microstructure variation in sponges sharing growth form: The encrusting demospongesDysidea avaraandCrambe crambe. Acta Zoologica, 2000, 81, 93-107.	0.8	24
122	Propagule size effects across multiple lifeâ€history stages in a marine invertebrate. Functional Ecology, 2010, 24, 685-693.	3.6	24
123	Genetic divergence and assortative mating between colour morphs of the sea urchin <i>Paracentrotus gaimardi</i> . Molecular Ecology, 2010, 19, 484-493.	3.9	24
124	Sponge Ecology in the Molecular Era. Advances in Marine Biology, 2012, 61, 345-410.	1.4	24
125	Small core communities and high variability in bacteria associated with the introduced ascidian Styela plicata. Symbiosis, 2013, 59, 35-46.	2.3	24
126	Molecular and Morphological Discrimination Between an Invasive Ascidian, <i>Ascidiella aspersa </i> and Its Congener <i>A. scabra </i> (Urochordata: Ascidiacea). Zoological Science, 2014, 31, 180-185.	0.7	24

#	Article	IF	CITATIONS
127	When invasion biology meets taxonomy: Clavelina oblonga (Ascidiacea) is an old invader in the Mediterranean Sea. Biological Invasions, 2016, 18, 1203-1215.	2.4	24
128	Under the canopy: Community-wide effects of invasive algae in Marine Protected Areas revealed by metabarcoding. Marine Pollution Bulletin, 2018, 127, 54-66.	5.0	24
129	East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species <i>Paracentrotus lividus</i> (Echinoidea). Diversity and Distributions, 2020, 26, 382-398.	4.1	24
130	The genus Pycnoclavella (Ascidiacea) in the Atlanto-Mediterranean region: a combined molecular and morphological approach. Invertebrate Systematics, 2007, 21, 187.	1.3	23
131	Chemical bioactivity of sponges along an environmental gradient in a Mediterranean cave. Scientia Marina, 2009, 73, 387-397.	0.6	23
132	Characterization of the Sperm Molecule Bindin in the Sea Urchin Genus Paracentrotus. Journal of Molecular Evolution, 2009, 68, 366-376.	1.8	22
133	Seasonal patterns of settlement and growth of introduced and native ascidians in bivalve cultures in the Ebro Delta (NE Iberian Peninsula). Regional Studies in Marine Science, 2018, 23, 12-22.	0.7	22
134	Measuring toxicity in marine environments: critical appraisal of three commonly used methods. Experientia, 1995, 51, 414-418.	1.2	21
135	Feeding cessation alters host morphology and bacterial communities in the ascidian Pseudodistoma crucigaster. Frontiers in Zoology, 2016, 13 , 2 .	2.0	21
136	Characterization of the transcriptome and gene expression of four different tissues in the ecologically relevant sea urchin <i>Arbacia lixula ⟨i⟩ using ⟨scp⟩RNA⟨ scp⟩â€seq. Molecular Ecology Resources, 2016, 16, 794-808.</i>	4.8	21
137	Stochasticity in space, persistence in time: genetic heterogeneity in harbour populations of the introduced ascidian <i>Styela plicata</i> . PeerJ, 2016, 4, e2158.	2.0	21
138	Density, habitat use and behaviour of the weedy seadragon Phyllopteryx taeniolatus (Teleostei:Syngnathidae) around Sydney, New South Wales, Australia. Marine and Freshwater Research, 2006, 57, 737.	1.3	20
139	Stable populations in unstable habitats: temporal genetic structure of the introduced ascidian Styela plicata in North Carolina. Marine Biology, 2016, 163, 1.	1.5	20
140	Distribution and Abundance of Ascidians from a Locality on the Northeast Coast of Spain. Marine Ecology, 1990, 11, 291-308.	1.1	19
141	Polymorphic microsatellite loci in the sponge Crambe crambe (Porifera: Poecilosclerida) and their variation in two distant populations. Molecular Ecology Notes, 2002, 2, 478-480.	1.7	19
142	Resource allocation in ascidians: reproductive investment vs. other lifeâ€history traits. Invertebrate Biology, 2004, 123, 168-180.	0.9	19
143	Temporal Variation in the Production of Four Secondary Metabolites in a Colonial Ascidian. Journal of Chemical Ecology, 2006, 32, 2079-2084.	1.8	19
144	Introducing the World Register of Introduced Marine Species (WRiMS). Management of Biological Invasions, 2021, 12, 792-811.	1.2	19

#	Article	IF	Citations
145	Growing or reproducing in a temperate sea: optimization of resource allocation in a colonial ascidian. Invertebrate Biology, 2013, 132, 69-80.	0.9	18
146	Temporal genetic variability in the Mediterranean common sea urchin Paracentrotus lividus. Marine Ecology - Progress Series, 2010, 408, 149-159.	1.9	18
147	Experimental evidence that intra-specific competition in seagrass meadows reduces reproductive potential in the sea urchin <i>Paracentrotus lividus</i> (Lamarck). Scientia Marina, 2005, 69, 475-484.	0.6	18
148	Reproductive cycle and growth of Phyllopteryx taeniolatus. Journal of Fish Biology, 2005, 67, 133-148.	1.6	17
149	Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity, 2019, 122, 244-259.	2.6	17
150	High fusibility and chimera prevalence in an invasive colonial ascidian. Scientific Reports, 2019, 9, 15673.	3.3	16
151	Microbiome structure of ecologically important bioeroding sponges (family Clionaidae): the role of host phylogeny and environmental plasticity. Coral Reefs, 2020, 39, 1285-1298.	2.2	16
152	Metabarcoding Techniques for Assessing Biodiversity of Marine Animal Forests., 2016, , 1-29.		16
153	A new mode of colony multiplication by modified budding in the ascidian Clavelina gemmae n. sp. (Clavelinidae). Invertebrate Biology, 2005, 124, 273-283.	0.9	15
154	Lack of genetic variation in mtDNA sequences over the amphiatlantic distribution range of the ascidian Ecteinascidia turbinata. Molecular Phylogenetics and Evolution, 2007, 45, 405-408.	2.7	15
155	Spatial and temporal variation of natural toxicity in cnidarians, bryozoans and tunicates in Mediterranean caves. Scientia Marina, 2005, 69, 485-492.	0.6	15
156	Silica Deposition in Demosponges. Progress in Molecular and Subcellular Biology, 2003, 33, 163-193.	1.6	14
157	Phylogenetic relationships of the Clavelinidae and Pycnoclavellidae (Ascidiacea) inferred from mtDNA data. Invertebrate Biology, 2008, 127, 108-120.	0.9	14
158	Ascidian fauna (Tunicata, Ascidiacea) of subantarctic and temperate regions of Chile. Zootaxa, 2016, 4093, 151-80.	0.5	14
159	Phylogeography and the Description of Geographic Patterns in Invasion Genomics. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	14
160	A marine Synechocystis (Chroococcales, Cyanophyta) epizoic on didemnid ascidians from the Mediterranean Sea. Phycologia, 1990, 29, 275-284.	1.4	13
161	Seasonal variation in the structure of three Mediterranean algal communities in various light conditions. Estuarine, Coastal and Shelf Science, 2005, 64, 613-622.	2.1	13
162	First records of didemnid ascidians harbouring <i>Prochloron</i> from Caribbean Panama: genetic relationships between Caribbean and Pacific photosymbionts and host ascidians. Systematics and Biodiversity, 2012, 10, 435-445.	1.2	13

#	Article	IF	Citations
163	Size matters sometimes: wall height and the structure of subtidal benthic invertebrate assemblages in south-eastern Australia and Mediterranean Spain. Journal of Biogeography, 2003, 30, 1797-1807.	3.0	12
164	Temporal variation of several structure descriptors in animal-dominated benthic communities in two Mediterranean caves. Journal of the Marine Biological Association of the United Kingdom, 2004, 84, 573-580.	0.8	12
165	The Microbiome of the Worldwide Invasive Ascidian Didemnum vexillum. Frontiers in Marine Science, 2020, 7, .	2.5	12
166	Early life histories in the bryozoan Schizobrachiella sanguinea: a case study. Marine Biology, 2005, 147, 735-745.	1.5	11
167	Biological traits of three closely related species of Pycnoclavella (Ascidiacea) in the Western Mediterranean. Marine Biology, 2007, 152, 1031-1038.	1.5	11
168	Enjoying the warming Mediterranean: Transcriptomic responses to temperature changes of a thermophilous keystone species in benthic communities. Molecular Ecology, 2020, 29, 3299-3315.	3.9	11
169	Methodological bias in the estimations of important meroplanktonic components from near-shore bottoms. Marine Ecology - Progress Series, 2003, 253, 67-75.	1.9	11
170	Too cold for invasions? Contrasting patterns of native and introduced ascidians in subantarctic and temperate Chile. Management of Biological Invasions, 2016, 7, 77-86.	1.2	11
171	Prey preferences of the polyclad flatworm Prostheceraeus roseus among Mediterranean species of the ascidian genus Pycnoclavella. Hydrobiologia, 2007, 592, 535-539.	2.0	10
172	Looks can be deceiving: Didemnum pseudovexillum sp. nov. (Ascidiacea) in European harbours. Marine Biodiversity, 2020, 50, .	1.0	10
173	Effects of a shark repulsion device on rocky reef fishes: no shocking outcomes. Marine Ecology - Progress Series, 2010, 408, 295-298.	1.9	10
174	Early biotic interactions among introduced and native benthic species reveal cryptic predation and shifts in larval behaviour. Marine Ecology - Progress Series, 2013, 488, 65-79.	1.9	10
175	ÂReproductive strategies of two common sympatric Mediterranean sponges: <i>Dysidea avara </i> (Dictyoceratida) and <i>Phorbas tenacior </i> (Poecilosclerida). PeerJ, 2018, 6, e5458.	2.0	10
176	Isolation of nine nuclear microsatellites in the common Mediterranean sea urchin, <i>Paracentrotus lividus</i> (Lamarck). Molecular Ecology Resources, 2009, 9, 1145-1147.	4.8	9
177	Demographics and vulnerability of a unique Australian fish, the weedy seadragon Phyllopteryx taeniolatus. Marine Ecology - Progress Series, 2011, 422, 253-264.	1.9	9
178	First in situ observations of the deep-sea carnivorous ascidian Dicopia antirrhinum Monniot C., 1972 in the Western Mediterranean Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 83, 51-56.	1.4	8
179	Polymorphic microsatellite loci isolated from the Atlanto-Mediterranean colonial ascidian Pycnoclavella sp. (Ascidiacea, Tunicata). Molecular Ecology Notes, 2006, 6, 518-520.	1.7	6
180	Lights and shadows: growth patterns in three sympatric and congeneric sponges (Ircinia spp.) with contrasting abundances of photosymbionts. Marine Biology, 2013, 160, 2743-2754.	1.5	6

#	Article	lF	Citations
181	DnoisE: distance denoising by entropy. An open-source parallelizable alternative for denoising sequence datasets. Peerl, 2022, 10, e12758.	2.0	6
182	A Non-Swimming Ascidian Larva: Protostyela longicauda (Styelidae). Invertebrate Biology, 1996, 115, 331.	0.9	5
183	The Two Sides of the Mediterranean: Population Genomics of the Black Sea Urchin Arbacia lixula (Linnaeus, 1758) in a Warming Sea. Frontiers in Marine Science, 2021, 8, .	2.5	5
184	The genus <i>Polycarpa</i> (Ascidiacea, Styelidae) on the Atlantic and Mediterranean coasts of the Iberian Peninsula. Journal of Zoology, 1995, 237, 593-614.	1.7	4
185	Isolation of polymorphic microsatellite loci for the marine invader <i>Microcosmus squamiger</i> (Ascidiacea). Molecular Ecology Resources, 2008, 8, 1405-1407.	4.8	4
186	Time or Space? Relative Importance of Geographic Distribution and Interannual Variation in Three Lineages of the Ascidian Pyura chilensis in the Southeast Pacific Coast. Frontiers in Marine Science, 0, 8, .	2.5	4
187	Ag-NOR and C-banding analysis of spermatocyte chromosomes ofClavelina lepadiformis(Ascidiacea,) Tj ETQq1 I	l 0.784314	1 rgBT /Over
188	Preface: Sponge research developments. Hydrobiologia, 2012, 687, 1-2.	2.0	3
189	Reproductive Strategies in Marine Invertebrates and the Structuring of Marine Animal Forests. , 2017, , 571-594.		3
190	Defence behind the ramparts: Spicule armament against specialist predators in a subtidal habitat-forming ascidian. Journal of Experimental Marine Biology and Ecology, 2018, 507, 31-38.	1.5	3
191	Morphology, genetics, and historical records support the synonymy of two ascidian species and suggest their spread throughout areas of the Southern Hemisphere. Invertebrate Systematics, 2021, 35, 675-687.	1.3	3
192	Reproductive Strategies in Marine Invertebrates and the Structuring of Marine Animal Forests. , 2016, , $1\text{-}24$.		3
193	Pycnoclavella stolonialis n. sp. (Tunicata: Ascidiacea), with phylogenetic and distributional remarks on the genus in Europe. Zootaxa, 2010, 2407, .	0.5	3
194	Aplidium sagresensisn. sp. (Ascidiacea, Polyclinidae) from the Atlantic coast of the Iberian Peninsula. Ophelia, 1993, 38, 97-105.	0.3	2
195	Living on the edge: Early life history phases as determinants of distribution in Pyura praeputialis (Heller, 1878), a rocky shore ecosystem engineer. Marine Environmental Research, 2018, 142, 40-47.	2.5	2
196	Preface. Advances in Marine Biology, 2012, 61, ix-x.	1.4	1
197	Ascidian Mitogenomics: Comparison of Evolutionary Rates in Closely Related Taxa Provides Evidence of Ongoing Speciation Events. Genome Biology and Evolution, 2014, 6, 931-931.	2.5	1
198	Preface. Advances in Marine Biology, 2012, 62, ix-x.	1.4	O