
Ralph H Loring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6811266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Speculation on How RIC-3 and Other Chaperones Facilitate α7 Nicotinic Receptor Folding and Assembly. Molecules, 2022, 27, 4527.	3.8	3
2	Why Does Knocking Out NACHO, But Not RIC3, Completely Block Expression of α7 Nicotinic Receptors in Mouse Brain?. Biomolecules, 2020, 10, 470.	4.0	11
3	GTS-21 has cell-specific anti-inflammatory effects independent of α7 nicotinic acetylcholine receptors. PLoS ONE, 2019, 14, e0214942.	2.5	29
4	Metabolic studies of synaptamide in an immortalized dopaminergic cell line. Prostaglandins and Other Lipid Mediators, 2019, 141, 25-33.	1.9	2
5	Evaluating Commercially Available Antibodies for Rat α7 Nicotinic Acetylcholine Receptors. Journal of Histochemistry and Cytochemistry, 2017, 65, 499-512.	2.5	18
6	Studying α7 nicotinic receptor antiâ€inflammatory signaling. FASEB Journal, 2015, 29, LB510.	0.5	0
7	Jasmonateâ€dependent alkaloid biosynthesis in <i>Catharanthus Roseus</i> hairy root cultures is correlated with the relative expression of <i>Orca</i> and <i>Zct</i> transcription factors. Biotechnology Progress, 2013, 29, 1367-1376.	2.6	31
8	Cellâ€specific effects on surface α7 nicotinic receptor expression revealed by overâ€expression and knockdown of rat <scp>RIC</scp> 3 protein. Journal of Neurochemistry, 2013, 124, 300-309.	3.9	19
9	TNF and ILâ€6/STAT3 crosstalk revealed in a commerciallyâ€available cell line. FASEB Journal, 2013, 27, lb552.	0.5	0
10	α4β2 Nicotinic Receptors Partially Mediate Anti-Inflammatory Effects through Janus Kinase 2-Signal Transducer and Activator of Transcription 3 but Not Calcium or cAMP Signaling. Molecular Pharmacology, 2011, 79, 167-174.	2.3	46
11	Assessing the limitations to terpenoid indole alkaloid biosynthesis in <i>Catharanthus roseus</i> hairy root cultures through gene expression profiling and precursor feeding. Biotechnology Progress, 2009, 25, 1289-1296.	2.6	47
12	Gene regulation of α4β2 nicotinic receptors: microarray analysis of nicotineâ€induced receptor upâ€regulation and antiâ€inflammatory effects. Journal of Neurochemistry, 2009, 111, 848-858.	3.9	25
13	Multistep expression and assembly of neuronal nicotinic receptors is both host-cell- and receptor-subtype-dependent. Molecular Brain Research, 2000, 75, 293-302.	2.3	41
14	Effects of Redox Reagents and Arsenical Compounds on [³ H]â€Cytisine Binding to Immunoisolated Nicotinic Acetylcholine Receptors from Chick Brain Containing α4 β2 Subunits. Journal of Neurochemistry, 1994, 62, 1368-1374.	3.9	5
15	Analysis of Nereistoxin Using HPLC And Electrochemical Detection. Analytical Letters, 1993, 26, 1051-1063.	1.8	8
16	Aromatic trivalent arsenicals: covalent yet reversible reagents for the agonist binding site of nicotinic receptors. Molecular Brain Research, 1992, 15, 113-120.	2.3	13
17	Effects ofP-Aminophenyl Dichloroarsine on Reduced High-affinity [3H]Nicotine Binding Sites from Chick Brain: A Covalent, Yet Reversible, Agent for Neuronal Nicotinic Receptors. European Journal of Neuroscience, 1992, 4, 1362-1368.	2.6	4
18	Pharmacological and Biochemical Properties of Nicotinic Receptors from Chick Retina. European Journal of Neuroscience, 1990, 2, 863-872.	2.6	4

Ralph H Loring

#	Article	IF	CITATIONS
19	A 3,4-dihydroxyphenylalanine oxidation product is a glutamatergic agonist in rat cortical neurons. Neuroscience Letters, 1990, 116, 168-171.	2.1	34
20	Blockade of nicotinic responses in rat retinal ganglion cells by neuronal bungarotoxin. Brain Research, 1990, 517, 209-214.	2.2	21
21	Agmatine acts as an antagonist of neuronal nicotinic receptors. British Journal of Pharmacology, 1990, 99, 207-211.	5.4	80
22	Selective modulation of NMDA responses by reduction and oxidation. Neuron, 1989, 2, 1257-1263.	8.1	432
23	Chapter 10 Characterization of neuronal nicotinic receptors using neuronal bungarotoxin. Progress in Brain Research, 1989, 79, 109-116.	1.4	4
24	Characterization of neuronal nicotinic receptors by snake venom neurotoxins. Trends in Neurosciences, 1988, 11, 73-78.	8.6	96
25	Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells. Pflugers Archiv European Journal of Physiology, 1987, 410, 37-43.	2.8	113
26	Amino acid sequence of toxin F, a snake venom toxin that blocks neuronal nicotinic receptors. Brain Research, 1986, 385, 30-37.	2.2	54