
Gregory V Korshin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6810382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research, 1997, 31, 1787-1795.	11.3	434
2	Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship. Water Research, 2019, 157, 406-414.	11.3	263
3	Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater. Water Research, 2012, 46, 5235-5246.	11.3	222
4	Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. Water Research, 2012, 46, 6257-6272.	11.3	175
5	Viruses in wastewater: occurrence, abundance and detection methods. Science of the Total Environment, 2020, 745, 140910.	8.0	170
6	Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights. Water Research, 2009, 43, 1541-1548.	11.3	159
7	Adsorption of natural organic matter (NOM) on iron oxide: Effects on NOM composition and formation of organo-halide compounds during chlorination. Water Research, 1997, 31, 1643-1650.	11.3	141
8	Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products. Water Research, 2012, 46, 403-412.	11.3	138
9	Characterization of elemental and structural composition of corrosion scales and deposits formed in drinking water distribution systems. Water Research, 2010, 44, 4570-4580.	11.3	136
10	Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants. Journal of Hazardous Materials, 2017, 323, 367-376.	12.4	126
11	Influence of Chlorination on Chromophores and Fluorophores in Humic Substances. Environmental Science & Technology, 1999, 33, 1207-1212.	10.0	121
12	EXAFS Study of the Inner Shell Structure in Copper(II) Complexes with Humic Substances. Environmental Science & Technology, 1998, 32, 2699-2705.	10.0	120
13	In Situ Examination of the Protonation Behavior of Fulvic Acids Using Differential Absorbance Spectroscopy. Environmental Science & Technology, 2008, 42, 6644-6649.	10.0	116
14	Use of UV Spectroscopy To Characterize the Reaction between NOM and Free Chlorine. Environmental Science & Technology, 2000, 34, 2570-2575.	10.0	109
15	Comparative Examination of Effects of Binding of Different Metals on Chromophores of Dissolved Organic Matter. Environmental Science & amp; Technology, 2014, 48, 3177-3185.	10.0	105
16	Correlations between differential absorbance and the formation of individual DBPs. Water Research, 2002, 36, 3273-3282.	11.3	103
17	In situ study of binding of copper by fulvic acid: Comparison of differential absorbance data and model predictions. Water Research, 2013, 47, 588-596.	11.3	99
18	The decrease of UV absorbance as an indicator of TOX formation. Water Research, 1997, 31, 946-949.	11.3	93

2

#	Article	IF	CITATIONS
19	XANES Study of Cu2+-Binding Sites in Aquatic Humic Substances. Environmental Science & Technology, 2000, 34, 2138-2142.	10.0	91
20	Evolution of Absorbance Spectra of Ozonated Wastewater and Its Relationship with the Degradation of Trace-Level Organic Species. Environmental Science & amp; Technology, 2010, 44, 6130-6137.	10.0	89
21	Quantifying metal ions binding onto dissolved organic matter using log-transformed absorbance spectra. Water Research, 2013, 47, 2603-2611.	11.3	87
22	Effects of Thermal Treatment on Halogenated Disinfection By-Products in Drinking Water. Water Research, 2001, 35, 3545-3550.	11.3	86
23	Comprehensive Isolation of Natural Organic Matter from Water for Spectral Characterizations and Reactivity Testing. ACS Symposium Series, 2000, , 68-83.	0.5	84
24	Differential absorbance study of effects of temperature on chlorine consumption and formation of disinfection by-products in chlorinated water. Water Research, 2008, 42, 1879-1888.	11.3	81
25	Characterization of dissolved organic matter using high-performance liquid chromatography (HPLC)–size exclusion chromatography (SEC) with a multiple wavelength absorbance detector. Chemosphere, 2012, 87, 879-885.	8.2	81
26	Interactions between the antibiotic tetracycline and humic acid: Examination of the binding sites, and effects of complexation on the oxidation of tetracycline. Water Research, 2021, 202, 117379.	11.3	75
27	Monitoring the Behavior of Emerging Contaminants in Wastewater-Impacted Rivers Based on the Use of Fluorescence Excitation Emission Matrixes (EEM). Environmental Science & (amp; Technology, 2017, 51, 4306-4316.	10.0	74
28	Changes in NOM Fluorescence Caused by Chlorination and their Associations with Disinfection by-Products Formation. Environmental Science & amp; Technology, 2009, 43, 724-729.	10.0	70
29	Multi-wavelength spectroscopic and chromatography study on the photocatalytic oxidation of natural organic matter. Water Research, 2010, 44, 2525-2532.	11.3	68
30	Using Spectrophotometric Titrations To Characterize Humic Acid Reactivity at Environmental Concentrations. Environmental Science & Technology, 2010, 44, 6782-6788.	10.0	67
31	Speciation of trace inorganic contaminants in corrosion scales and deposits formed in drinking water distribution systems. Water Research, 2011, 45, 5553-5563.	11.3	67
32	Use of Differential Spectroscopy to Evaluate the Structure and Reactivity of Humics. Water Science and Technology, 1999, 40, 9-16.	2.5	66
33	Comparative study of reactions of endocrine disruptors bisphenol A and diethylstilbestrol in electrochemical treatment and chlorination. Water Research, 2006, 40, 1070-1078.	11.3	66
34	Examination of disinfection by-product (DBP) formation in source waters: A study using log-transformed differential spectra. Water Research, 2014, 50, 179-188.	11.3	66
35	In-Situ Investigation of Interactions between Magnesium Ion and Natural Organic Matter. Environmental Science & Technology, 2015, 49, 8323-8329.	10.0	65
36	Influence of natural organic matter on the corrosion of leaded brass in potable water. Corrosion Science, 2000, 42, 53-66.	6.6	64

#	Article	IF	CITATIONS
37	Examination of NOM Chlorination Reactions by Conventional and Stop-Flow Differential Absorbance Spectroscopy. Environmental Science & amp; Technology, 2007, 41, 2776-2781.	10.0	64
38	Investigation of the Reduction of Lead Dioxide by Natural Organic Matter. Environmental Science & Technology, 2007, 41, 5510-5514.	10.0	63
39	Monitoring DBP formation with differential UV spectroscopy. Journal - American Water Works Association, 1998, 90, 88-100.	0.3	61
40	Comparative study of electrochemical degradation and ozonation of nonylphenol. Water Research, 2005, 39, 2527-2534.	11.3	61
41	Investigation of the Kinetics and Mechanisms of the Oxidation of Cerussite and Hydrocerussite by Chlorine. Environmental Science & amp; Technology, 2008, 42, 3241-3247.	10.0	60
42	Application of UV absorbance and fluorescence indicators to assess the formation of biodegradable dissolved organic carbon and bromate during ozonation. Water Research, 2017, 111, 154-162.	11.3	59
43	Electrochemical reduction of haloacetic acids and exploration of their removal by electrochemical treatment. Electrochimica Acta, 2001, 47, 747-751.	5.2	56
44	Adsorption of Uranyl on Gibbsite:  A Time-Resolved Laser-Induced Fluorescence Spectroscopy Study. Environmental Science & Technology, 2006, 40, 1244-1249.	10.0	56
45	Effects of Ionic Strength on the Chromophores of Dissolved Organic Matter. Environmental Science & Technology, 2015, 49, 5905-5912.	10.0	52
46	Effects of pH on the speciation coefficients in models of bromide influence on the formation of trihalomethanes and haloacetic acids. Water Research, 2014, 62, 117-126.	11.3	51
47	Effects of calcium on the chromophores of dissolved organic matter and their interactions with copper. Water Research, 2015, 81, 47-53.	11.3	51
48	Formation of aldehydes and carboxylic acids in ozonated surface water and wastewater: A clear relationship with fluorescence changes. Chemosphere, 2015, 125, 182-190.	8.2	51
49	Use of Iron Oxide-Coated Sand To Remove Strontium from Simulated Hanford Tank Wastes. Environmental Science & Technology, 2001, 35, 4905-4909.	10.0	50
50	Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications. Journal of Hazardous Materials, 2021, 415, 125580.	12.4	50
51	Influence of natural organic matter on the morphology of corroding lead surfaces and behavior of lead-containing particles. Water Research, 2005, 39, 811-818.	11.3	49
52	Study of iron and aluminum binding to Suwannee River fulvic acid using absorbance and fluorescence spectroscopy: Comparison of data interpretation based on NICA-Donnan and Stockholm humic models. Water Research, 2013, 47, 5439-5446.	11.3	48
53	Characterization of disinfection byproduct formation and associated changes to dissolved organic matter during solar photolysis of free available chlorine. Water Research, 2018, 146, 318-327.	11.3	48
54	Use of log-transformed absorbance spectra for online monitoring of the reactivity of natural organic matter. Water Research, 2015, 84, 136-143.	11.3	47

#	Article	IF	CITATIONS
55	Comparison of the effects of chloramine and chlorine on the aromaticity of dissolved organic matter and yields of disinfection by-products. Chemosphere, 2018, 191, 477-484.	8.2	47
56	Formation of disinfection by-products and applicability of differential absorbance spectroscopy to monitor halogenation in chlorinated coastal and deep ocean seawater. Desalination, 2005, 176, 57-69.	8.2	46
57	Characterizing property and treatability of dissolved effluent organic matter using size exclusion chromatography with an array of absorbance, fluorescence, organic nitrogen and organic carbon detectors. Chemosphere, 2020, 243, 125321.	8.2	43
58	Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron. Water Research, 2013, 47, 5257-5269.	11.3	42
59	Removal of polycyclic synthetic musks and antineoplastic drugs in ozonated wastewater: Quantitation based on the data of differential spectroscopy. Journal of Hazardous Materials, 2016, 304, 242-250.	12.4	42
60	Indoor versus outdoor transmission of SARS-COV-2: environmental factors in virus spread and underestimated sources of risk. Euro-Mediterranean Journal for Environmental Integration, 2021, 6, 30.	1.3	42
61	Effects of blending of desalinated and conventionally treated surface water on iron corrosion and its release from corroding surfaces and pre-existing scales. Water Research, 2013, 47, 3817-3826.	11.3	41
62	Influence of NOM on copper corrosion. Journal - American Water Works Association, 1996, 88, 36-47.	0.3	40
63	Interactions of Pb(II)/Pb(IV) Solid Phases with Chlorine and Their Effects on Lead Release. Environmental Science & Technology, 2009, 43, 3278-3284.	10.0	38
64	Occurrence of trace inorganic contaminants in drinking water distribution systems. Journal - American Water Works Association, 2012, 104, E181.	0.3	38
65	The relationship between TOX formation and spectral changes accompanying chlorination of pre-concentrated or fractionated NOM. Water Research, 2002, 36, 3265-3272.	11.3	36
66	Modeling bromide effects on yields and speciation of dihaloacetonitriles formed in chlorinated drinking water. Water Research, 2013, 47, 5995-6006.	11.3	36
67	Effects of charging on the chromophores of dissolved organic matter from the Rio Negro basin. Water Research, 2014, 59, 154-164.	11.3	36
68	Spectroscopic surrogates for real time monitoring of water quality in wastewater treatment and water reuse. Current Opinion in Environmental Science and Health, 2018, 2, 12-19.	4.1	35
69	Spectroscopic study of the degradation of antibiotics and the generation of representative EfOM oxidation products in ozonated wastewater. Chemosphere, 2012, 86, 774-782.	8.2	33
70	Investigation of Mechanisms of Oxidation of EDTA and NTA by Permanganate at High pH. Environmental Science & Technology, 2006, 40, 5089-5094.	10.0	32
71	Metal-release potential from iron corrosion scales under stagnant and active flow, and varying water quality conditions. Water Research, 2020, 175, 115675.	11.3	32
72	Aging of Iron (Hydr)oxides by Heat Treatment and Effects on Heavy Metal Binding. Environmental Science & Technology, 2000, 34, 3991-4000.	10.0	30

#	Article	IF	CITATIONS
73	Effects of Changing disinfectants on lead and copper release. Journal - American Water Works Association, 2008, 100, 75-87.	0.3	30
74	Behavior of trace inorganic contaminants in drinking water distribution systems. Journal - American Water Works Association, 2010, 102, 107-118.	0.3	30
75	Quantifying the formation of nitrogen-containing disinfection by-products in chlorinated water using absorbance and fluorescence indexes. Water Science and Technology, 2011, 63, 40-44.	2.5	28
76	Spectroscopic characterization of changes of DOM deprotonation–protonation properties in water treatment processes. Chemosphere, 2016, 148, 426-435.	8.2	28
77	Modelling disinfection by-products formation in bromide-containing waters. Journal of Hazardous Materials, 2009, 168, 782-786.	12.4	27
78	Changes of the corrosion potential of iron in stagnation and flow conditions and their relationship with metal release. Water Research, 2014, 62, 136-146.	11.3	27
79	Excitation–Emission Matrix Spectroscopy for Analysis of Chemical Composition of Combustion Generated Particulate Matter. Environmental Science & Technology, 2020, 54, 8198-8209.	10.0	27
80	Spectroscopic study of interactions of lead (II) ions with dissolved organic matter: Evidence of preferential engagement of carboxylic groups. Geochimica Et Cosmochimica Acta, 2017, 213, 308-316.	3.9	25
81	Degradation of typical macrolide antibiotic roxithromycin by hydroxyl radical: kinetics, products, and toxicity assessment. Environmental Science and Pollution Research, 2019, 26, 14570-14582.	5.3	25
82	Separation of Cesium from High Ionic Strength Solutions Using a Cobalt Hexacyanoferrate-Modified Graphite Electrode. Environmental Science & Technology, 1999, 33, 2633-2637.	10.0	23
83	Changes of excitation/emission matrixes of wastewater caused by Fenton- and Fenton-like treatment and their associations with the generation of hydroxyl radicals, oxidation of effluent organic matter and degradation of trace-level organic pollutants. Journal of Hazardous Materials, 2013, 244-245, 698-708.	12.4	23
84	Effects of blending of desalinated water with treated surface drinking water on copper and lead release. Water Research, 2010, 44, 4057-4066.	11.3	22
85	Developing surrogate indicators for predicting suppression of halophenols formation potential and abatement of estrogenic activityÂduring ozonation of water and wastewater. Water Research, 2019, 161, 152-160.	11.3	22
86	Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review. Environmental Engineering Research, 2018, 23, 345-353.	2.5	22
87	Reactions of the Flavonoid Hesperetin with Chlorine:Â A Spectroscopic Study of the Reaction Pathways. Environmental Science & Technology, 2004, 38, 4603-4611.	10.0	21
88	Structural Study of the Incorporation of Heavy Metals into Solid Phase Formed during the Oxidation of EDTA by Permanganate at High pH. Environmental Science & Technology, 2007, 41, 2560-2565.	10.0	21
89	Relationships between trihalomethanes, haloacetic acids, and haloacetonitriles formed by the chlorination of raw, treated, and fractionated surface waters. Journal of Water Supply: Research and Technology - AQUA, 2014, 63, 21-30.	1.4	21
90	Electrochemical and XAFS Studies of Effects of Carbonate on the Oxidation of Arsenite. Environmental Science & Technology, 2006, 40, 228-234.	10.0	20

#	Article	IF	CITATIONS
91	Spectroscopic in situ examination of interactions of rare earth ions with humic substances. Water Research, 2015, 68, 273-281.	11.3	20
92	Examination of <i>in situ</i> Generation of Hydroxyl Radicals and Ozone in a Flow-through Electrochemical Reactor. Ozone: Science and Engineering, 2008, 30, 113-119.	2.5	19
93	Formation of Pb(III) Intermediates in the Electrochemically Controlled Pb(II)/PbO ₂ System. Environmental Science & Technology, 2012, 46, 1430-1438.	10.0	19
94	Differential ATR FTIR spectroscopy of membrane fouling: Contributions of the substrate/fouling films and correlations with transmembrane pressure. Water Research, 2019, 161, 27-34.	11.3	19
95	Effects of varying temperatures and alkalinities on the corrosion and heavy metal release from low-lead galvanized steel. Environmental Science and Pollution Research, 2020, 27, 2412-2422.	5.3	19
96	Spectroscopic examination of effects of iodide on the chloramination of natural organic matter. Water Research, 2015, 70, 449-457.	11.3	18
97	Use of UV Spectroscopy To Study Chlorination of Natural Organic Matter. ACS Symposium Series, 1996, , 182-195.	0.5	17
98	Ozonation effects on emerging micropollutants and effluent organic matter in wastewater: characterization using changes of three-dimensional HP-SEC and EEM fluorescence data. Environmental Science and Pollution Research, 2016, 23, 20567-20579.	5.3	17
99	Comparison of the yields of mono-, Di- and tri-chlorinated HAAs and THMs in chlorination and chloramination based on experimental and quantum-chemical data. Water Research, 2020, 169, 115100.	11.3	17
100	Characterization of NOM and its adsorption by iron oxide coated sand (IOCS) using UV and fluorescence spectroscopy. Journal of Environmental Engineering and Science, 2006, 5, 467-472.	0.8	16
101	Effects of NOM properties on copper release from model solid phases. Water Research, 2013, 47, 4843-4852.	11.3	16
102	Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE). Water Research, 2018, 136, 104-111.	11.3	16
103	Preventing the colloidal dispersion of Pb(<scp>iv</scp>) corrosion scales and lead release in drinking water distribution systems. Environmental Science: Water Research and Technology, 2019, 5, 1262-1269.	2.4	16
104	Differentiation of Pathways of Nitrated Byproduct Formation from Ammonium and Nitrite During Sulfate Radical Oxidation. Environmental Science & amp; Technology, 2022, 56, 7935-7944.	10.0	16
105	Examination of the kinetics of degradation of the antineoplastic drug 5-fluorouracil by chlorine and bromine. Journal of Hazardous Materials, 2015, 282, 125-132.	12.4	15
106	Excitation emission matrix fluorescence spectroscopy for combustion generated particulate matter source identification. Atmospheric Environment, 2020, 220, 117065.	4.1	14
107	Comparison of the properties of standard soil and aquatic fulvic and humic acids based on the data of differential absorbance and fluorescence spectroscopy. Chemosphere, 2020, 261, 128189.	8.2	13
108	Ternary Model of the Speciation of I-/Br-/Cl-Trihalomethanes Formed in Chloraminated Surface Waters. Environmental Science & Technology, 2016, 50, 4468-4475.	10.0	12

#	Article	IF	CITATIONS
109	Quantum-chemical simulations of the hydration of Pb(II) ion: structure, hydration energies, and pKa1 value. Journal of Molecular Modeling, 2018, 24, 193.	1.8	12
110	Differential absorbance study of interactions between europium, soil and aquatic NOM and model compounds. Chemosphere, 2019, 235, 96-103.	8.2	12
111	Monitoring the kinetics of reactions between natural organic matter and Al(III) ions using differential absorbance spectra. Chemosphere, 2019, 235, 220-226.	8.2	12
112	Experimental and quantum-chemical study of differential absorbance spectra of environmentally relevant species: A study of quercetin deprotonation and its interactions with copper (II) ions. Science of the Total Environment, 2019, 679, 229-236.	8.0	12
113	Identification of pterins as characteristic humic-like fluorophores released from cyanobacteria and their behavior and fate in natural and engineered water systems. Chemical Engineering Journal, 2022, 428, 131154.	12.7	12
114	Effect of changing water quality on galvanic coupling. Journal - American Water Works Association, 2012, 104, E136.	0.3	11
115	Effects of chlorination on the fluorescence of seawater: Pronounced changes of emission intensity and their relationships with the formation of disinfection byproducts. Chemosphere, 2019, 218, 430-437.	8.2	11
116	Water, energy and waste: The great European deal for the environment. Science of the Total Environment, 2021, 764, 142911.	8.0	11
117	A spectroscopic study of the bromination of the endocrine disruptor ethynylestradiol. Chemosphere, 2008, 72, 504-508.	8.2	10
118	Rotating Ring-Disk Electrode and Quantum-Chemical Study of the Electrochemical Reduction of Monoiodoacetic Acid and Iodoform. Environmental Science & Technology, 2015, 49, 13542-13549.	10.0	10
119	Interactions between natural organic matter (NOM) and the cationic dye toluidine blue at varying pHs and ionic strengths: Effects of NOM charges and Donnan gel potentials. Chemosphere, 2019, 236, 124272.	8.2	10
120	Phototransformation of roxithromycin in the presence of dissolved organic matter: Characteriazation of the degradation products and toxicity evaluation. Science of the Total Environment, 2020, 733, 139348.	8.0	10
121	Interpretation of the differential UV–visible absorbance spectra of metal-NOM complexes based on the quantum chemical simulations for the model compound esculetin. Chemosphere, 2021, 276, 130043.	8.2	10
122	Interpreting main features of the differential absorbance spectra of chlorinated natural organic matter: Comparison of the experimental and theoretical spectra of model compounds. Water Research, 2020, 185, 116206.	11.3	9
123	Use of spectroscopic indicators for the monitoring of bromate generation in ozonated wastewater containing variable concentrations of bromide. Water Research, 2020, 182, 116009.	11.3	9
124	Self-forming Dynamic Membranes for Wastewater Treatment. Separation and Purification Reviews, 2022, 51, 195-211.	5.5	9
125	Chlorine Based Oxidants for Water Purification and Disinfection. ACS Symposium Series, 2011, , 223-245.	0.5	8
126	Effect of chlorination on the characteristics of effluent organic matter and the phototransformation of sulfamethoxazole in secondary wastewater. Chemosphere, 2022, 295, 133193.	8.2	8

#	Article	IF	CITATIONS
127	Studies of metal-binding sites in natural organic matter and their role in the generation of disinfection by-products using lanthanide ion probes. Chemosphere, 2002, 49, 629-636.	8.2	7
128	Spectroscopic Studies of the Roles of Distinct Chromophores in NOM Chlorination and DBP Formation. ACS Symposium Series, 2008, , 158-171.	0.5	6
129	A density functional study of dissociative electron transfer reactions with participation of halogenated methanes. Journal of Electroanalytical Chemistry, 2004, 573, 315-325.	3.8	5
130	Comparison of the Performance of Spectroscopic Indices Developed to Quantify the Halogenation of Natural Organic Matter at Varying Chlorine Concentrations, Reaction Times and Temperatures. ACS Symposium Series, 2008, , 198-212.	0.5	4
131	Development and validation of online surrogate parameters for water quality monitoring at a conventional water treatment plant using a UV absorbance spectrolyser. , 2011, , .		4
132	Active-chlorine-mediated oxidation of 5-fluorouracil on a hierarchically ordered macroporous RuO2 electrode. Chemosphere, 2022, 301, 134728.	8.2	4
133	A STUDY OF NON-UNIFORMITY OF METAL-BINDING SITES IN HUMIC SUBSTANCES BY X-RAY ABSORPTION SPECTROSCOPY. , 1999, , 191-201.		3
134	Interpretation of the formation of unstable halogen-containing disinfection by-products based on the differential absorbance spectroscopy approach. Chemosphere, 2021, 268, 129241.	8.2	3
135	Removal of dimethylarsinic acid (DMA) in the Fe/C system: roles of Fe(II) release, DMA/Fe(II) and DMA/Fe(III) complexation. Water Research, 2022, 213, 118093.	11.3	3
136	Fluorescence Quenching and Energy Transfer Phenomena Associated with the Interactions of Terbium Ion and Humic Acid. Aquatic Geochemistry, 2018, 24, 195-207.	1.3	2
137	Effects of fulvic acids on the electrochemical reactions and mass transfer properties of organic cation toluidine blue: Results of measurements by the method of rotating ring-disc electrode. Water Research, 2020, 184, 116151.	11.3	2
138	Quantitation of Interactions of Suwannee River Fulvic Acid with Protons Based on Numerical Deconvolution of Differential Absorbance and Fluorescence Spectra. , 2013, , 233-237.		2
139	Comparison of the formation of aldehydes and carboxylic acids in ozonated and electrochemically treated surface water. Chemosphere, 2022, 307, 135664.	8.2	2
140	Key Parameters and Kinetics of Oxidation of Lead (II) Solid Phases by Chlorine in Drinking Water. Water Practice and Technology, 2006, 1, .	2.0	1
141	Bromination and Chlorination of NOM: New Modeling Approaches and Mechanistic Insights. ACS Symposium Series, 2015, , 63-77.	0.5	1
142	Solid-phase excitation-emission matrix spectroscopy for chemical analysis of combustion aerosols. PLoS ONE, 2021, 16, e0251664.	2.5	1
143	COMPREHENSIVE STUDY OF UV ABSORPTION AND FLUORESCENCE SPECTRA OF SUWANNEE RIVER NOM FRACTIONS. , 1999, , 147-156.		1
144	EXAFS AND XANES STUDIES OF EFFECTS OF pH ON COMPLEXATION OF COPPER BY HUMIC SUBSTANCES. , 2000, , 227-233.		0

#	Article	IF	CITATIONS
145	Leaching of Heavy Metals Due to Changing Disinfectants in Drinking Water Distribution Systems. Proceedings of the Water Environment Federation, 2009, 2009, 485-496.	0.0	Ο
146	An Innovative In Situ Spectroscopic Approach to Characterize Functional Groups in Natural Organic Matters (NOMs) and Their Interactions with Protons and Metals. , 2013, , 181-186.		0
147	Transient Changes of Corrosion Potentials and Their Correlations with Metal Release During Stagnation and Flow Episodes in Drinking Water Systems. ECS Meeting Abstracts, 2018, , .	0.0	Ο
148	Rotating Ring-Disk Electrode Study of the Electrochemical Dehalogenation of Iodinated Contrast Media. ECS Meeting Abstracts, 2018, , .	0.0	0
149	Distribution of Corrosion Potentials across Galvanically Coupled Interfaces Exposed in Drinking Water. ECS Meeting Abstracts, 2018, , .	0.0	0