## Alexander Yulaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6809748/publications.pdf

Version: 2024-02-01



ALEXANDED YULLEV

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale, 2014, 6, 14394-14403.                                                                               | 5.6  | 78        |
| 2  | Photonic waveguide to free-space Gaussian beam extreme mode converter. Light: Science and Applications, 2018, 7, 72.                                                                             | 16.6 | 66        |
| 3  | Metasurface-Integrated Photonic Platform for Versatile Free-Space Beam Projection with Polarization Control. ACS Photonics, 2019, 6, 2902-2909.                                                  | 6.6  | 49        |
| 4  | From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology<br>Revealed via <i>in Situ</i> Scanning Electron Microscopy. Nano Letters, 2018, 18, 1644-1650. | 9.1  | 47        |
| 5  | Enabling Photoemission Electron Microscopy in Liquids via Graphene-Capped Microchannel Arrays.<br>Nano Letters, 2017, 17, 1034-1041.                                                             | 9.1  | 46        |
| 6  | Magneto-optical trapping using planar optics. New Journal of Physics, 2021, 23, 013021.                                                                                                          | 2.9  | 37        |
| 7  | Graphene Microcapsule Arrays for Combinatorial Electron Microscopy and Spectroscopy in Liquids.<br>ACS Applied Materials & Interfaces, 2017, 9, 26492-26502.                                     | 8.0  | 29        |
| 8  | Interfacial Electrochemistry in Liquids Probed with Photoemission Electron Microscopy. Journal of the American Chemical Society, 2017, 139, 18138-18141.                                         | 13.7 | 28        |
| 9  | Nanoscale Mapping of the Double Layer Potential at the Graphene–Electrolyte Interface. Nano Letters,<br>2020, 20, 1336-1344.                                                                     | 9.1  | 25        |
| 10 | Toward clean suspended CVD graphene. RSC Advances, 2016, 6, 83954-83962.                                                                                                                         | 3.6  | 22        |
| 11 | In Aqua Electrochemistry Probed by XPEEM: Experimental Setup, Examples, and Challenges. Topics in<br>Catalysis, 2018, 61, 2195-2206.                                                             | 2.8  | 14        |
| 12 | Meta-grating outcouplers for optimized beam shaping in the visible. Optics Express, 2021, 29, 14789.                                                                                             | 3.4  | 13        |
| 13 | Exceptional points in lossy media lead to deep polynomial wave penetration with spatially uniform power loss. Nature Nanotechnology, 2022, 17, 583-589.                                          | 31.5 | 12        |
| 14 | Imaging and Analysis of Encapsulated Objects through Selfâ€Assembled Electron and Optically<br>Transparent Graphene Oxide Membranes. Advanced Materials Interfaces, 2017, 4, 1600734.            | 3.7  | 8         |
| 15 | Collimating a Free-Space Gaussian Beam by Means of a Chip-Scale Photonic Extreme Mode Converter. ,<br>2018, , .                                                                                  |      | 5         |
| 16 | Immobilization and Encapsulation of Micro- and Nano- Objects with Electron Transparent Graphene<br>Oxide membranes. Microscopy and Microanalysis, 2014, 20, 1798-1799.                           | 0.4  | 3         |
| 17 | Probing Electrified Liquid–Solid Interfaces with Scanning Electron Microscopy. ACS Applied Materials<br>& Interfaces, 2020, 12, 56650-56657.                                                     | 8.0  | 3         |
| 18 | Li Diffusion in All-Solid-State Batteries Imaged Through Optical and Electron Transparent Electrodes.<br>Microscopy and Microanalysis, 2016, 22, 1352-1353.                                      | 0.4  | 0         |

Alexander Yulaev

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Encapsulated Object Analysis: Imaging and Analysis of Encapsulated Objects through Selfâ€Assembled<br>Electron and Optically Transparent Graphene Oxide Membranes (Adv. Mater. Interfaces 2/2017).<br>Advanced Materials Interfaces, 2017, 4, . | 3.7 | 0         |
| 20 | SEM and Auger Electron Spectroscopy of Liquid Water through Graphene Membrane. Microscopy and Microanalysis, 2017, 23, 880-881.                                                                                                                 | 0.4 | 0         |
| 21 | Multi-Beam Integration for On-chip Quantum Devices. , 2021, , .                                                                                                                                                                                 |     | 0         |
| 22 | Projecting a Wide Surface-Normal Gaussian Beam from an Apodised Grating Supporting Spatially-Broad<br>Standing Wave Resonances. , 2020, , .                                                                                                     |     | 0         |
| 23 | Slow-Light Standing Wave Resonances in an Inverse-Designed Grating for Wide Surface-Normal Free-Space Beam Projection. , 2020, , .                                                                                                              |     | 0         |
| 24 | Interfacing Photonics to Free-Space via Large-area Inverse-designed Diffraction Elements and Metasurfaces. , 2021, , .                                                                                                                          |     | 0         |
| 25 | Surface-Normal Free-Space Beam Projection via Slow-Light Standing-Wave Resonance Photonic<br>Gratings. ACS Photonics, 0, , .                                                                                                                    | 6.6 | 0         |