Duk Young Jeon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6809483/publications.pdf

Version: 2024-02-01

687363 794594 22 544 13 19 citations h-index g-index papers 22 22 22 1131 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nature Communications, 2020, 11 , 3040.	12.8	53
2	First-principles-derived effective mass approximation for the improved description of quantum nanostructures. JPhys Materials, 2020, 3, 034012.	4.2	9
3	Ligand-Exchange-Ready CulnS ₂ /ZnS Quantum Dots via Surface-Ligand Composition Control for Film-Type Display Devices. ACS Applied Nano Materials, 2019, 2, 5504-5511.	5.0	17
4	Mixture of quantum dots and ZnS nanoparticles as emissive layer for improved quantum dots light emitting diodes. RSC Advances, 2019, 9, 15177-15183.	3.6	6
5	Correlation of near-unity quantum yields with photogenerated excitons in X-type ligand passivated CsPbBr ₃ perovskite quantum dots. Nanoscale Advances, 2019, 1, 2828-2834.	4.6	17
6	A highly luminescent quantum dot/mesoporous TiO ₂ nanocomplex film under controlled energy transfer. Nanoscale, 2019, 11, 13219-13226.	5.6	5
7	Enhancing the luminescence of carbon nanodots in films by tailoring the functional groups through alkylamine-functionalization and reduction. Physical Chemistry Chemical Physics, 2019, 21, 26095-26101.	2.8	4
8	In Situ Doping System To Improve the Electric-Field-Induced Fluorescence Properties of CdZnS/ZnS Quantum Rods for Light-Emitting Devices. ACS Applied Nano Materials, 2018, 1, 4278-4282.	5.0	0
9	Highly luminescent blue-emitting CdZnS/ZnS nanorods having electric-field-induced fluorescence switching properties. Journal of Materials Chemistry C, 2017, 5, 2098-2106.	5.5	13
10	Synthesis of efficient near-infrared-emitting CulnS ₂ /ZnS quantum dots by inhibiting cation-exchange for bio application. RSC Advances, 2017, 7, 10675-10682.	3.6	29
11	Solution processible MoOx-incorporated graphene anode for efficient polymer light-emitting diodes. Nanotechnology, 2017, 28, 235201.	2.6	4
12	Controlled Synthesis of CulnS ₂ /ZnS Nanocubes and Their Sensitive Photoluminescence Response toward Hydrogen Peroxide. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32097-32105.	8.0	13
13	Conjugated Polyelectrolyte Hybridized ZnO Nanoparticles as a Cathode Interfacial Layer for Efficient Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2015, 25, 7450-7456.	14.9	35
14	Enhancing the light utilization efficiency of microalgae using organic dyes. Bioresource Technology, 2015, 181, 355-359.	9.6	44
15	Improved Operational Stability of Polymer Lightâ€Emitting Diodes Based on Silver Nanowire Electrode Through Preâ€Bias Conditioning Treatment. Advanced Functional Materials, 2014, 24, 6465-6472.	14.9	29
16	Exciton Dissociation and Chargeâ€Transport Enhancement in Organic Solar Cells with Quantumâ€Dot/Nâ€doped CNT Hybrid Nanomaterials. Advanced Materials, 2013, 25, 2011-2017.	21.0	103
17	In situ ligand exchange of thiol-capped CulnS2/ZnS quantum dots at growth stage without affecting luminescent characteristics. Journal of Colloid and Interface Science, 2011, 363, 703-706.	9.4	41
18	Characteristics of CulnS2/ZnS quantum dots and its application on LED. Journal of Crystal Growth, 2011, 326, 90-93.	1.5	79

#	Article	IF	CITATIONS
19	Degradation Characteristics of Red Light-Emitting CulnS2/ZnS Quantum Dots as a Wavelength Converter for LEDs. Electrochemical and Solid-State Letters, 2011, 14, K55.	2.2	28
20	Characterization of nano-size YVO[sub 4]:Eu and (Y,Gd)VO[sub 4]:Eu phosphors by low voltage cathodo- and photoluminescence. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 843.	1.6	15
21	Characterization of nano-size YVO/sub 4/:Eu and (Y,Gd)VO/sub 4/:Eu phosphor via low voltage cathodoluminescence., 0,,.		O
22	Effect of environmental elements on field emission properties of CNT tips sealed in FE-BLUs., 0,,.		0