Mathias Wilhelm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6809261/publications.pdf

Version: 2024-02-01

53 6,894 citations

30 55
h-index g-index

61 61 docs citations

61 times ranked 11260 citing authors

#	Article	IF	CITATIONS
1	ProteomicsDB: toward a FAIR open-source resource for life-science research. Nucleic Acids Research, 2022, 50, D1541-D1552.	14.5	35
2	Linking post-translational modifications and protein turnover by site-resolved protein turnover profiling. Nature Communications, 2022, 13, 165.	12.8	33
3	Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics. Journal of Proteome Research, 2022, 21, 1204-1207.	3.7	7
4	High temporal resolution proteome and phosphoproteome profiling of stem cell-derived hepatocyte development. Cell Reports, 2022, 38, 110604.	6.4	8
5	Prosit Transformer: A transformer for Prediction of MS2 Spectrum Intensities. Journal of Proteome Research, 2022, 21, 1359-1364.	3.7	10
6	SIMSI-Transfer: Software-Assisted Reduction of Missing Values in Phosphoproteomic and Proteomic Isobaric Labeling Data Using Tandem Mass Spectrum Clustering. Molecular and Cellular Proteomics, 2022, 21, 100238.	3.8	9
7	Prosit-TMT: Deep Learning Boosts Identification of TMT-Labeled Peptides. Analytical Chemistry, 2022, 94, 7181-7190.	6.5	8
8	Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nature Chemical Biology, 2022, 18, 812-820.	8.0	36
9	Predicting fragment intensities and retention time of iTRAQ―and TMTProâ€labeled peptides with Prosit‶MT. Proteomics, 2022, , 2100257.	2.2	5
10	Mass spectrometry-based draft of the mouse proteome. Nature Methods, 2022, 19, 803-811.	19.0	19
11	Universal Spectrum Explorer: A Standalone (Web-)Application for Cross-Resource Spectrum Comparison. Journal of Proteome Research, 2021, 20, 3388-3394.	3.7	22
12	Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics. Nature Communications, 2021, 12, 3346.	12.8	90
13	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	19.0	198
14	Identification of 7 000–9 000 Proteins from Cell Lines and Tissues by Single-Shot Microflow LC–MS/MS. Analytical Chemistry, 2021, 93, 8687-8692.	6.5	25
15	Spectral Prediction Features as a Solution for the Search Space Size Problem in Proteogenomics. Molecular and Cellular Proteomics, 2021, 20, 100076.	3.8	31
16	A proteomics sample metadata representation for multiomics integration and big data analysis. Nature Communications, 2021, 12, 5854.	12.8	45
17	ProteomicsDB: a multi-omics and multi-organism resource for life science research. Nucleic Acids Research, 2020, 48, D1153-D1163.	14.5	126
18	Proteome activity landscapes of tumor cell lines determine drug responses. Nature Communications, 2020, 11, 3639.	12.8	47

#	Article	IF	Citations
19	Proteomic and transcriptomic profiling of aerial organ development in Arabidopsis. Scientific Data, 2020, 7, 334.	5.3	20
20	Mass-spectrometry-based draft of the Arabidopsis proteome. Nature, 2020, 579, 409-414.	27.8	328
21	Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Nature Communications, 2020, 11, 1548.	12.8	148
22	Meltome atlasâ€"thermal proteome stability across the tree of life. Nature Methods, 2020, 17, 495-503.	19.0	152
23	Challenges in Clinical Metaproteomics Highlighted by the Analysis of Acute Leukemia Patients with Gut Colonization by Multidrug-Resistant Enterobacteriaceae. Proteomes, 2019, 7, 2.	3.5	71
24	Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nature Methods, 2019, 16, 509-518.	19.0	539
25	PROTEOFORMER 2.0: Further Developments in the Ribosome Profiling-assisted Proteogenomic Hunt for New Proteoforms. Molecular and Cellular Proteomics, 2019, 18, S126-S140.	3.8	43
26	Chemoproteomic Selectivity Profiling of PIKK and PI3K Kinase Inhibitors. ACS Chemical Biology, 2019, 14, 655-664.	3.4	21
27	CiRCus: A Framework to Enable Classification of Complex High-Throughput Experiments. Journal of Proteome Research, 2019, 18, 1486-1493.	3.7	3
28	A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Molecular Systems Biology, 2019, 15, e8503.	7.2	576
29	Mining the Human Tissue Proteome for Protein Citrullination. Molecular and Cellular Proteomics, 2018, 17, 1378-1391.	3.8	93
30	ProteomicsDB. Nucleic Acids Research, 2018, 46, D1271-D1281.	14.5	197
31	Peptide Level Turnover Measurements Enable the Study of Proteoform Dynamics. Molecular and Cellular Proteomics, 2018, 17, 974-992.	3.8	98
32	Expanding the Use of Spectral Libraries in Proteomics. Journal of Proteome Research, 2018, 17, 4051-4060.	3.7	47
33	ProteomeTools: Systematic Characterization of 21 Post-translational Protein Modifications by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Using Synthetic Peptides. Molecular and Cellular Proteomics, 2018, 17, 1850-1863.	3.8	78
34	Building ProteomeTools based on a complete synthetic human proteome. Nature Methods, 2017, 14, 259-262.	19.0	182
35	Chemoproteomicsâ€Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors. ChemMedChem, 2017, 12, 999-1011.	3.2	23
36	PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration. Proteomics, 2017, 17, 1700263.	2.2	58

#	Article	IF	CITATIONS
37	Trimodal Mixed Mode Chromatography That Enables Efficient Offline Two-Dimensional Peptide Fractionation for Proteome Analysis. Analytical Chemistry, 2017, 89, 8884-8891.	6.5	22
38	The target landscape of clinical kinase drugs. Science, 2017, 358, .	12.6	609
39	Pharmacoproteomic characterisation of human colon and rectal cancer. Molecular Systems Biology, 2017, 13, 951.	7.2	44
40	Ethylene glycol improves electrospray ionization efficiency in bottom-up proteomics. Analytical and Bioanalytical Chemistry, 2017, 409, 1049-1057.	3.7	14
41	Wilhelm et al. reply. Nature, 2017, 547, E23-E23.	27.8	7
42	Chemical Proteomics and Structural Biology Define EPHA2 Inhibition by Clinical Kinase Drugs. ACS Chemical Biology, 2016, 11, 3400-3411.	3.4	42
43	Phosphoproteome Profiling Reveals Molecular Mechanisms of Growth-Factor-Mediated Kinase Inhibitor Resistance in EGFR-Overexpressing Cancer Cells. Journal of Proteome Research, 2016, 15, 4490-4504.	3.7	18
44	Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins. Cell Reports, 2015, 12, 183-189.	6.4	22
45	Optimized Chemical Proteomics Assay for Kinase Inhibitor Profiling. Journal of Proteome Research, 2015, 14, 1574-1586.	3.7	104
46	A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets. Molecular and Cellular Proteomics, 2015, 14, 2394-2404.	3.8	350
47	BiPACE 2Dâ€"graph-based multiple alignment for comprehensive 2D gas chromatography-mass spectrometry. Bioinformatics, 2014, 30, 988-995.	4.1	14
48	Ion Mobility Tandem Mass Spectrometry Enhances Performance of Bottom-up Proteomics. Molecular and Cellular Proteomics, 2014, 13, 3709-3715.	3.8	98
49	Mass-spectrometry-based draft of the human proteome. Nature, 2014, 509, 582-587.	27.8	1,697
50	Global Proteome Analysis of the NCI-60 Cell Line Panel. Cell Reports, 2013, 4, 609-620.	6.4	276
51	A Classifier Based on Accurate Mass Measurements to Aid Large Scale, Unbiased Glycoproteomics. Molecular and Cellular Proteomics, 2013, 12, 1017-1025.	3.8	23
52	mz5: Space- and Time-efficient Storage of Mass Spectrometry Data Sets. Molecular and Cellular Proteomics, 2012, 11, 0111.011379.	3.8	56
53	Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets. BMC Bioinformatics, 2012, 13, 214.	2.6	33