Vincent G Eijsink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807655/publications.pdf Version: 2024-02-01

		13099	17105
220	17,411	68	122
papers	citations	h-index	g-index
231	231	231	10274
231	231	231	10274
all docs	docs citations	times ranked	citing authors

VINCENT C. FUSINK

#	Article	IF	CITATIONS
1	The impact of reductants on the catalytic efficiency of a lytic polysaccharide monooxygenase and the special role of dehydroascorbic acid. FEBS Letters, 2022, 596, 53-70.	2.8	29
2	Chromatographic analysis of oxidized cello-oligomers generated by lytic polysaccharide monooxygenases using dual electrolytic eluent generation. Journal of Chromatography A, 2022, 1662, 462691.	3.7	7
3	Heterologous Protein Production in Lactobacillus (plantarum) Using pSIP Vectors. Methods in Molecular Biology, 2022, 2406, 205-217.	0.9	3
4	Comparison of Six Lytic Polysaccharide Monooxygenases from <i>Thermothielavioides terrestris</i> Shows That Functional Variation Underlies the Multiplicity of LPMO Genes in Filamentous Fungi. Applied and Environmental Microbiology, 2022, 88, aem0009622.	3.1	22
5	2-Naphthol Impregnation Prior to Steam Explosion Promotes LPMO-Assisted Enzymatic Saccharification of Spruce and Yields High-Purity Lignin. ACS Sustainable Chemistry and Engineering, 2022, 10, 5233-5242.	6.7	7
6	Enhanced in situ H2O2 production explains synergy between an LPMO with a cellulose-binding domain and a single-domain LPMO. Scientific Reports, 2022, 12, 6129.	3.3	30
7	Glycan processing in gut microbiomes. Current Opinion in Microbiology, 2022, 67, 102143.	5.1	27
8	Comparison of the Immunogenic Properties of Lactiplantibacillus plantarum Carrying the Mycobacterial Ag85B-ESAT-6 Antigen at Various Cellular Localizations. Frontiers in Microbiology, 2022, 13, .	3.5	3
9	1H, 13C, 15N resonance assignment of the apo form of the small, chitin-active lytic polysaccharide monooxygenase JdLPMO10A from Jonesia denitrificans. Biomolecular NMR Assignments, 2021, 15, 79-84.	0.8	1
10	Unraveling the roles of the reductant and free copper ions in LPMO kinetics. Biotechnology for Biofuels, 2021, 14, 28.	6.2	62
11	Impact of down-stream processing on functional properties of yeasts and the implications on gut health of Atlantic salmon (Salmo salar). Scientific Reports, 2021, 11, 4496.	3.3	14
12	Alginate Degradation: Insights Obtained through Characterization of a Thermophilic Exolytic Alginate Lyase. Applied and Environmental Microbiology, 2021, 87, .	3.1	17
13	In situ measurements of oxidation–reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose. Biotechnology for Biofuels, 2021, 14, 46.	6.2	20
14	The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nature Communications, 2021, 12, 1230.	12.8	57
15	Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. Environmental Microbiology Reports, 2021, 13, 559-581.	2.4	119
16	Genomic and Proteomic Study of Andreprevotia ripae Isolated from an Anthill Reveals an Extensive Repertoire of Chitinolytic Enzymes. Journal of Proteome Research, 2021, 20, 4041-4052.	3.7	3
17	Sugar oxidoreductases and LPMOs – two sides of the same polysaccharide degradation story?. Carbohydrate Research, 2021, 505, 108350.	2.3	17
18	Fecal Excretion and Whole-Body Retention of Macro and Micro Minerals in Atlantic Salmon Fed Torula Yeast Grown on Sugar Kelp Hydrolysate. Animals, 2021, 11, 2409.	2.3	1

#	Article	IF	CITATIONS
19	Kinetic Characterization of a Putatively Chitin-Active LPMO Reveals a Preference for Soluble Substrates and Absence of Monooxygenase Activity. ACS Catalysis, 2021, 11, 11685-11695.	11.2	31
20	Structural and functional variation of chitin-binding domains of a lytic polysaccharide monooxygenase from Cellvibrio japonicus. Journal of Biological Chemistry, 2021, 297, 101084.	3.4	16
21	Fungal Lytic Polysaccharide Monooxygenases (LPMOs): Biological Importance and Applications. , 2021, , 281-294.		7
22	Chromatographic Assays for the Enzymatic Degradation of Chitin. Bio-protocol, 2021, 11, e4014.	0.4	1
23	Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa. Applied and Environmental Microbiology, 2021, 87, e0165221.	3.1	15
24	Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes. Biochemistry, 2021, 60, 3633-3643.	2.5	31
25	Characterization of a lytic polysaccharide monooxygenase from Aspergillus fumigatus shows functional variation among family AA11 fungal LPMOs. Journal of Biological Chemistry, 2021, 297, 101421.	3.4	5
26	The Metaproteomics Initiative: a coordinated approach for propelling the functional characterization of microbiomes. Microbiome, 2021, 9, 243.	11.1	36
27	Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase. FEBS Journal, 2020, 287, 897-908.	4.7	47
28	Spruce sugars and poultry hydrolysate as growth medium in repeated fed-batch fermentation processes for production of yeast biomass. Bioprocess and Biosystems Engineering, 2020, 43, 723-736.	3.4	26
29	Molecular mechanism of the chitinolytic peroxygenase reaction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1504-1513.	7.1	90
30	Laccase-Catalyzed Oxidation of Lignin Induces Production of H ₂ O ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 831-841.	6.7	48
31	Chemoenzymatic Synthesis of Chito-oligosaccharides with Alternating <i>N</i> - <scp>d</scp> -Acetylglucosamine and <scp>d</scp> -Glucosamine. Biochemistry, 2020, 59, 4581-4590.	2.5	9
32	Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Scientific Reports, 2020, 10, 20267.	3.3	51
33	Engineering lytic polysaccharide monooxygenases (LPMOs). Methods in Enzymology, 2020, 644, 1-34.	1.0	12
34	A thermostable bacterial lytic polysaccharide monooxygenase with high operational stability in a wide temperature range. Biotechnology for Biofuels, 2020, 13, 194.	6.2	20
35	Mechanistic basis of substrate–O ₂ coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19178-19189.	7.1	42
36	Synthesis of glycoconjugates utilizing the regioselectivity of a lytic polysaccharide monooxygenase. Scientific Reports, 2020, 10, 13197.	3.3	12

#	Article	IF	CITATIONS
37	Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 623-657.	3.0	109
38	Structural insights of the enzymes from the chitin utilization locus of Flavobacterium johnsoniae. Scientific Reports, 2020, 10, 13775.	3.3	9
39	Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs). Nature Communications, 2020, 11, 5786.	12.8	63
40	Analysis of Four Chitin-Active Lytic Polysaccharide Monooxygenases from Streptomyces griseus Reveals Functional Variation. Journal of Agricultural and Food Chemistry, 2020, 68, 13641-13650.	5.2	13
41	Anchoring of heterologous proteins in multiple Lactobacillus species using anchors derived from Lactobacillus plantarum. Scientific Reports, 2020, 10, 9640.	3.3	11
42	Thermodynamic insights into the role of aromatic residues in chitooligosaccharide binding to the transglycosylating chitinase-D from Serratia proteamaculans. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140414.	2.3	0
43	Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity. PLoS ONE, 2020, 15, e0235642.	2.5	26
44	A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. Journal of Biological Chemistry, 2020, 295, 9134-9146.	3.4	26
45	Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. Microbial Cell Factories, 2020, 19, 19.	4.0	30
46	Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases. Nature Communications, 2020, 11, 890.	12.8	63
47	Using chitosan to understand chitinases and the role of processivity in the degradation of recalcitrant polysaccharides. Reactive and Functional Polymers, 2020, 148, 104488.	4.1	10
48	Tailoring Hydrothermal Vent Biodiversity Toward Improved Biodiscovery Using a Novel in situ Enrichment Strategy. Frontiers in Microbiology, 2020, 11, 249.	3.5	14
49	Demonstrationâ€scale enzymatic saccharification of sulfiteâ€pulped spruce with addition of hydrogen peroxide for <scp>LPMO</scp> activation. Biofuels, Bioproducts and Biorefining, 2020, 14, 734-745.	3.7	34
50	The Role of Lytic Polysaccharide Monooxygenases in Wood Rotting Basidiomycetes. Trends in Glycoscience and Glycotechnology, 2020, 32, E135-E143.	0.1	3
51	The Role of Lytic Polysaccharide Monooxygenases in Wood Rotting Basidiomycetes. Trends in Glycoscience and Glycotechnology, 2020, 32, J111-J119.	0.1	0
52	Comparison of three seemingly similar lytic polysaccharide monooxygenases from Neurospora crassa suggests different roles in plant biomass degradation. Journal of Biological Chemistry, 2019, 294, 15068-15081.	3.4	59
53	Inactivated Lactobacillus plantarum Carrying a Surface-Displayed Ag85B-ESAT-6 Fusion Antigen as a Booster Vaccine Against Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2019, 10, 1588.	4.8	17
54	Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus <i>Malbranchea cinnamomea</i> by Functional Characterization. Applied and Environmental Microbiology, 2019, 85, .	3.1	54

#	Article	IF	CITATIONS
55	The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate. Biotechnology for Biofuels, 2019, 12, 235.	6.2	25
56	Can we make Chitosan by Enzymatic Deacetylation of Chitin?. Molecules, 2019, 24, 3862.	3.8	24
57	Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity. Journal of Biological Chemistry, 2019, 294, 19349-19364.	3.4	26
58	Polar residues lining the binding cleft of a Serratia marcescens family 18 chitinase position the substrate for attack and stabilize associative interactions. Molecular Physics, 2019, 117, 3664-3682.	1.7	4
59	Oxidation-reduction potential (ORP) as a tool for process monitoring of H2O2/LPMO assisted enzymatic hydrolysis of cellulose. Process Biochemistry, 2019, 86, 89-97.	3.7	17
60	Identification and characterization of a hyperthermophilic GH9 cellulase from the Arctic Mid-Ocean Ridge vent field. PLoS ONE, 2019, 14, e0222216.	2.5	21
61	Comparison of eight Lactobacillus species for delivery of surface-displayed mycobacterial antigen. Vaccine, 2019, 37, 6371-6379.	3.8	15
62	Challenges and opportunities in mimicking non-enzymatic brown-rot decay mechanisms for pretreatment of Norway spruce. Wood Science and Technology, 2019, 53, 291-311.	3.2	11
63	Metaproteomics: Sample Preparation and Methodological Considerations. Advances in Experimental Medicine and Biology, 2019, 1073, 187-215.	1.6	26
64	Lytic Polysaccharide Monooxygenases in Enzymatic Processing of Lignocellulosic Biomass. ACS Catalysis, 2019, 9, 4970-4991.	11.2	145
65	On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnology for Biofuels, 2019, 12, 58.	6.2	119
66	Polysaccharide degradation by lytic polysaccharide monooxygenases. Current Opinion in Structural Biology, 2019, 59, 54-64.	5.7	105
67	Production, Characterization, and Application of an Alginate Lyase, AMOR_PL7A, from Hot Vents in the Arctic Mid-Ocean Ridge. Journal of Agricultural and Food Chemistry, 2019, 67, 2936-2945.	5.2	31
68	Structural and Thermodynamic Signatures of Ligand Binding to the Enigmatic Chitinase D of <i>Serratia proteamaculans</i> . Journal of Physical Chemistry B, 2019, 123, 2270-2279.	2.6	7
69	Antibiotic saving effect of combination therapy through synergistic interactions between well-characterized chito-oligosaccharides and commercial antifungals against medically relevant yeasts. PLoS ONE, 2019, 14, e0227098.	2.5	13
70	The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials. Biotechnology for Biofuels, 2019, 12, 270.	6.2	10
71	pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from <i>Gloeophyllum trabeum</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	62
72	Fungal PQQ-dependent dehydrogenases and their potential in biocatalysis. Current Opinion in Chemical Biology, 2019, 49, 113-121.	6.1	22

#	Article	IF	CITATIONS
73	Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts. PLoS ONE, 2019, 14, e0210208.	2.5	35
74	Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity. Carbohydrate Research, 2019, 473, 66-71.	2.3	18
75	Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System. Applied and Environmental Microbiology, 2019, 85, .	3.1	38
76	Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. Journal of Biological Chemistry, 2019, 294, 1516-1528.	3.4	60
77	From proteins to polysaccharides: lifestyle and genetic evolution of <i>Coprothermobacter proteolyticus</i> . ISME Journal, 2019, 13, 603-617.	9.8	30
78	How a Lytic Polysaccharide Monooxygenase Binds Crystalline Chitin. Biochemistry, 2018, 57, 1893-1906.	2.5	68
79	Systems analysis of the glycoside hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions. Journal of Biological Chemistry, 2018, 293, 3849-3859.	3.4	33
80	Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. International Journal of Recycling of Organic Waste in Agriculture, 2018, 7, 49-58.	2.0	88
81	The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action. Applied and Environmental Microbiology, 2018, 84, .	3.1	62
82	Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresource Technology, 2018, 249, 35-41.	9.6	86
83	Structural determinants of bacterial lytic polysaccharide monooxygenase functionality. Journal of Biological Chemistry, 2018, 293, 1397-1412.	3.4	89
84	Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. Journal of Biological Chemistry, 2018, 293, 523-531.	3.4	130
85	Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiology and Molecular Biology Reviews, 2018, 82, .	6.6	204
86	Analytical Tools for Characterizing Cellulose-Active Lytic Polysaccharide Monooxygenases (LPMOs). Methods in Molecular Biology, 2018, 1796, 219-246.	0.9	19
87	Methylation of the Nâ€ŧerminal histidine protects a lytic polysaccharide monooxygenase from autoâ€oxidative inactivation. Protein Science, 2018, 27, 1636-1650.	7.6	91
88	Key Residues Affecting Transglycosylation Activity in Family 18 Chitinases: Insights into Donor and Acceptor Subsites. Biochemistry, 2018, 57, 4325-4337.	2.5	25
89	The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation. Journal of Biological Chemistry, 2018, 293, 13006-13015.	3.4	100
90	The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail. Biotechnology for Biofuels, 2018, 11, 209.	6.2	146

#	Article	IF	CITATIONS
91	Microbial Protein Produced from Brown Seaweed and Spruce Wood as a Feed Ingredient. Journal of Agricultural and Food Chemistry, 2018, 66, 8328-8335.	5.2	37
92	Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome. PLoS ONE, 2018, 13, e0197862.	2.5	23
93	Characterization and synergistic action of a tetraâ€modular lytic polysaccharide monooxygenase from <i>Bacillus cereus</i> . FEBS Letters, 2018, 592, 2562-2571.	2.8	48
94	Functional characterization of a lytic polysaccharide monooxygenase from the thermophilic fungus Myceliophthora thermophila. PLoS ONE, 2018, 13, e0202148.	2.5	36
95	Comparative Assessment of Enzymatic Hydrolysis for Valorization of Different Protein-Rich Industrial Byproducts. Journal of Agricultural and Food Chemistry, 2018, 66, 9738-9749.	5.2	48
96	Resonance assignments for the apo-form of the cellulose-active lytic polysaccharide monooxygenase TaLPMO9A. Biomolecular NMR Assignments, 2018, 12, 357-361.	0.8	2
97	Multipoint Precision Binding of Substrate Protects Lytic Polysaccharide Monooxygenases from Self-Destructive Off-Pathway Processes. Biochemistry, 2018, 57, 4114-4124.	2.5	78
98	Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis. Journal of Proteomics, 2017, 156, 63-74.	2.4	34
99	Structural diversity of lytic polysaccharide monooxygenases. Current Opinion in Structural Biology, 2017, 44, 67-76.	5.7	162
100	Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 414-421.	2.3	28
101	Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Journal of Biotechnology, 2017, 246, 16-23.	3.8	59
102	Development of enzyme cocktails for complete saccharification of chitin using mono-component enzymes from Serratia marcescens. Process Biochemistry, 2017, 56, 132-138.	3.7	38
103	Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry. Methods in Molecular Biology, 2017, 1588, 71-92.	0.9	23
104	Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation. Biochemistry, 2017, 56, 2529-2532.	2.5	53
105	Outer membrane vesicles from <i>Fibrobacter succinogenes</i> S85 contain an array of carbohydrateâ€active enzymes with versatile polysaccharideâ€degrading capacity. Environmental Microbiology, 2017, 19, 2701-2714.	3.8	55
106	Thermodynamics of tunnel formation upon substrate binding in a processive glycoside hydrolase. Archives of Biochemistry and Biophysics, 2017, 620, 35-42.	3.0	20
107	Chemical shift assignments for the apo-form of the catalytic domain, the linker region, and the carbohydrate-binding domain of the cellulose-active lytic polysaccharide monooxygenase ScLPMO10C. Biomolecular NMR Assignments, 2017, 11, 257-264.	0.8	7
108	Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4. Scientific Reports, 2017, 7, 1746.	3.3	57

#	Article	IF	CITATIONS
109	Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens. Applied and Environmental Microbiology, 2017, 83, .	3.1	34
110	Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nature Chemical Biology, 2017, 13, 1123-1128.	8.0	401
111	Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs. Biotechnology for Biofuels, 2017, 10, 177.	6.2	56
112	Lactobacillus plantarum producing a Chlamydia trachomatis antigen induces a specific IgA response after mucosal booster immunization. PLoS ONE, 2017, 12, e0176401.	2.5	30
113	Structure and function of a CE4 deacetylase isolated from a marine environment. PLoS ONE, 2017, 12, e0187544.	2.5	34
114	Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environmental Microbiology, 2016, 18, 38-49.	3.8	63
115	Proteomic investigation of the secretome of <i>Cellvibrio japonicus</i> during growth on chitin. Proteomics, 2016, 16, 1904-1914.	2.2	28
116	Fueling biomass-degrading oxidative enzymes by light-driven water oxidation. Green Chemistry, 2016, 18, 5357-5366.	9.0	52
117	A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnology for Biofuels, 2016, 9, 260.	6.2	70
118	Structural and functional characterization of a small chitinâ€active lytic polysaccharide monooxygenase domain of a multiâ€modular chitinase from <i>Jonesia denitrificans</i> . FEBS Letters, 2016, 590, 34-42.	2.8	31
119	Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose. Journal of Chromatography A, 2016, 1445, 46-54.	3.7	90
120	Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus. Journal of Biological Chemistry, 2016, 291, 7300-7312.	3.4	103
121	Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5922-5927.	7.1	126
122	Backbone and side-chain 1H, 13C, and 15N chemical shift assignments for the apo-form of the lytic polysaccharide monooxygenase NcLPMO9C. Biomolecular NMR Assignments, 2016, 10, 277-280.	0.8	8
123	Extracellular electron transfer systems fuel cellulose oxidative degradation. Science, 2016, 352, 1098-1101.	12.6	368
124	<i>Fg</i> <scp>LPMO</scp> 9A from <i>Fusarium graminearum</i> cleaves xyloglucan independently of the backbone substitution pattern. FEBS Letters, 2016, 590, 3346-3356.	2.8	44
125	A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes. Applied and Environmental Microbiology, 2016, 82, 6557-6572.	3.1	97
126	Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase. Protein Science, 2016, 25, 2175-2186.	7.6	75

8

#	Article	IF	CITATIONS
127	Display of a Î ² -mannanase and a chitosanase on the cell surface of Lactobacillus plantarum towards the development of whole-cell biocatalysts. Microbial Cell Factories, 2016, 15, 169.	4.0	28
128	Aromatic-Mediated Carbohydrate Recognition in Processive <i>Serratia marcescens</i> Chitinases. Journal of Physical Chemistry B, 2016, 120, 1236-1249.	2.6	23
129	A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. Journal of Proteomics, 2016, 131, 104-112.	2.4	23
130	Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Scientific Reports, 2015, 5, 18561.	3.3	180
131	Surface display of an anti-DEC-205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo. Microbial Cell Factories, 2015, 14, 95.	4.0	24
132	Lactobacillus plantarum displaying CCL3 chemokine in fusion with HIV-1 Gag derived antigen causes increased recruitment of T cells. Microbial Cell Factories, 2015, 14, 169.	4.0	26
133	Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine. PLoS ONE, 2015, 10, e0126694.	2.5	23
134	A new generation of versatile chromogenic substrates for high-throughput analysis of biomass-degrading enzymes. Biotechnology for Biofuels, 2015, 8, 70.	6.2	53
135	Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microbial Biotechnology, 2015, 8, 815-827.	4.2	197
136	Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnology for Biofuels, 2015, 8, 187.	6.2	187
137	EF0176 and EF0177 from Enterococcus faecalis V583 are substrate-binding lipoproteins involved in ABC transporter mediated ribonucleoside uptake. Microbiology (United Kingdom), 2015, 161, 754-764.	1.8	2
138	A small lytic polysaccharide monooxygenase from <i>StreptomycesÂgriseus</i> targeting α―and β hitin. FEBS Journal, 2015, 282, 1065-1079.	4.7	69
139	1H, 13C, 15N resonance assignment of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis. Biomolecular NMR Assignments, 2015, 9, 207-210.	0.8	13
140	The effect of the carbohydrate binding module on substrate degradation by the human chitotriosidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1494-1501.	2.3	21
141	Heterologous expression of a recombinant lactobacillal β-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin P-based expression system. Microbial Cell Factories, 2015, 14, 30.	4.0	31
142	The directionality of processive enzymes acting on recalcitrant polysaccharides is reflected in the kinetic signatures of oligomer degradation. FEBS Letters, 2015, 589, 1807-1812.	2.8	5
143	Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1448-1452.	0.8	8
144	Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity. Journal of Biological Chemistry, 2015, 290, 22955-22969.	3.4	157

#	Article	IF	CITATIONS
145	Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors. PLoS ONE, 2014, 9, e91125.	2.5	52
146	On the Determination of Water Content in Biomass Processing. Bioenergy Research, 2014, 7, 442-449.	3.9	18
147	Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6287-6292.	7.1	358
148	A C4-oxidizing Lytic Polysaccharide Monooxygenase Cleaving Both Cellulose and Cello-oligosaccharides. Journal of Biological Chemistry, 2014, 289, 2632-2642.	3.4	281
149	Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresource Technology, 2014, 171, 350-359.	9.6	56
150	Structural and Electronic Snapshots during the Transition from a Cu(II) to Cu(I) Metal Center of a Lytic Polysaccharide Monooxygenase by X-ray Photoreduction. Journal of Biological Chemistry, 2014, 289, 18782-18792.	3.4	99
151	Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8446-8451.	7.1	241
152	A rapid quantitative activity assay shows that the <i>Vibrio cholerae</i> colonization factor GbpA is an active lytic polysaccharide monooxygenase. FEBS Letters, 2014, 588, 3435-3440.	2.8	155
153	Comparative Study of Two Chitin-Active and Two Cellulose-Active AA10-Type Lytic Polysaccharide Monooxygenases. Biochemistry, 2014, 53, 1647-1656.	2.5	124
154	Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microbial Cell Factories, 2014, 13, 57.	4.0	63
155	Changes in the composition of the main polysaccharide groups of oil seed rape straw following steam explosion and saccharification. Biomass and Bioenergy, 2014, 61, 121-130.	5.7	9
156	Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Scientific Reports, 2014, 4, 5288.	3.3	39
157	The chitinolytic machinery of <i><scp>S</scp>erratiaÂmarcescens</i> – a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS Journal, 2013, 280, 3028-3049.	4.7	244
158	Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium. Journal of Biological Chemistry, 2013, 288, 12828-12839.	3.4	158
159	Conversion of α-Chitin Substrates with Varying Particle Size and Crystallinity Reveals Substrate Preferences of the Chitinases and Lytic Polysaccharide Monooxygenase of <i>Serratia marcescens</i> . Journal of Agricultural and Food Chemistry, 2013, 61, 11061-11066.	5.2	42
160	Microbial community structure in a biogas digester utilizing the marine energy crop Saccharina latissima. 3 Biotech, 2013, 3, 407-414.	2.2	28
161	Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. Journal of Chromatography A, 2013, 1271, 144-152.	3.7	151
162	Mode of action of acetylxylan esterases on acetyl glucuronoxylan and acetylated oligosaccharides generated by a GH10 endoxylanase. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5075-5086.	2.4	51

#	Article	IF	CITATIONS
163	Analysis of productive binding modes in the human chitotriosidase. FEBS Letters, 2013, 587, 3508-3513.	2.8	21
164	Effect of different steam explosion conditions on methane potential and enzymatic saccharification of birch. Bioresource Technology, 2013, 127, 343-349.	9.6	128
165	The Vibrio cholerae Colonization Factor GbpA Possesses a Modular Structure that Governs Binding to Different Host Surfaces. PLoS Pathogens, 2012, 8, e1002373.	4.7	150
166	Surface Display of N-Terminally Anchored Invasin by Lactobacillus plantarum Activates NF-κB in Monocytes. Applied and Environmental Microbiology, 2012, 78, 5864-5871.	3.1	53
167	NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18779-18784.	7.1	236
168	Hallmarks of Processivity in Glycoside Hydrolases from Crystallographic and Computational Studies of the Serratia marcescens Chitinases. Journal of Biological Chemistry, 2012, 287, 36322-36330.	3.4	89
169	Human Chitotriosidase-Catalyzed Hydrolysis of Chitosan. Biochemistry, 2012, 51, 487-495.	2.5	53
170	Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. Journal of Applied Phycology, 2012, 24, 1295-1301.	2.8	96
171	Characterization of the Chitinolytic Machinery of Enterococcus faecalis V583 and High-Resolution Structure of Its Oxidative CBM33 Enzyme. Journal of Molecular Biology, 2012, 416, 239-254.	4.2	128
172	Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 2012, 5, 45.	6.2	803
173	Measuring Processivity. Methods in Enzymology, 2012, 510, 69-95.	1.0	80
174	Processivity and substrate-binding in family 18 chitinases. Biocatalysis and Biotransformation, 2012, 30, 353-365.	2.0	18
175	Metagenomics of the Svalbard Reindeer Rumen Microbiome Reveals Abundance of Polysaccharide Utilization Loci. PLoS ONE, 2012, 7, e38571.	2.5	190
176	Mutational Effects on Transglycosylating Activity of Family 18 Chitinases and Construction of a Hypertransglycosylating Mutant. Biochemistry, 2011, 50, 5693-5703.	2.5	82
177	The Putative Endoglucanase PcGH61D from Phanerochaete chrysosporium Is a Metal-Dependent Oxidative Enzyme that Cleaves Cellulose. PLoS ONE, 2011, 6, e27807.	2.5	226
178	An endo-β-N-acetylglucosaminidase from Enterococcus faecalisV583 responsible for the hydrolysis of high-mannose and hybrid-type N-linked glycans. FEMS Microbiology Letters, 2011, 325, 123-129.	1.8	24
179	Substrate positioning in chitinase A, a processive chito-biohydrolase fromSerratia marcescens. FEBS Letters, 2011, 585, 2339-2344.	2.8	21
180	Cleavage of cellulose by a CBM33 protein. Protein Science, 2011, 20, 1479-1483.	7.6	317

#	Article	IF	CITATIONS
181	Determination of substrate binding energies in individual subsites of a family 18 chitinase. FEBS Letters, 2010, 584, 4581-4585.	2.8	36
182	Signatures of activation parameters reveal substrate-dependent rate determining steps in polysaccharide turnover by a family 18 chitinase. Carbohydrate Polymers, 2010, 81, 14-20.	10.2	32
183	Dissecting factors that contribute to ligand-binding energetics for family 18 chitinases. Thermochimica Acta, 2010, 511, 189-193.	2.7	11
184	The Roles of Three <i>Serratia marcescens</i> Chitinases in Chitin Conversion Are Reflected in Different Thermodynamic Signatures of Allosamidin Binding. Journal of Physical Chemistry B, 2010, 114, 6144-6149.	2.6	28
185	An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides. Science, 2010, 330, 219-222.	12.6	1,059
186	Production of Chitooligosaccharides and Their Potential Applications in Medicine. Marine Drugs, 2010, 8, 1482-1517.	4.6	496
187	Aromatic Residues in the Catalytic Center of Chitinase A from Serratia marcescens Affect Processivity, Enzyme Activity, and Biomass Converting Efficiency. Journal of Biological Chemistry, 2009, 284, 10610-10617.	3.4	142
188	Structural and functional characterization of a putative polysaccharide deacetylase of the human parasite <i>Encephalitozoon cuniculi</i> . Protein Science, 2009, 18, 1197-1209.	7.6	27
189	The chitinolytic system of <i>Lactococcus lactis</i> ssp. <i>lactis</i> comprises a nonprocessive chitinase and a chitinâ€binding protein that promotes the degradation of α―and βâ€chitin. FEBS Journal, 2009, 276, 2402-2415.	4.7	42
190	Directed evolution of a <i>Bacillus</i> chitinase. Biotechnology Journal, 2009, 4, 501-509.	3.5	25
191	Inhibition of a family 18 chitinase by chitooligosaccharides. Carbohydrate Polymers, 2008, 74, 41-49.	10.2	38
192	Towards new enzymes for biofuels: lessons from chitinase research. Trends in Biotechnology, 2008, 26, 228-235.	9.3	146
193	Expression and Characterization of Endochitinase C from <i>Serratia marcescens</i> BJL200 and Its Purification by a One-Step General Chitinase Purification Method. Bioscience, Biotechnology and Biochemistry, 2008, 72, 715-723.	1.3	50
194	Hydrolysis of Brewers' Spent Grain by Carbohydrate Degrading Enzymes. Journal of the Institute of Brewing, 2008, 114, 306-314.	2.3	76
195	Thermodynamic Analysis of Allosamidin Binding to a Family 18 Chitinase. Biochemistry, 2007, 46, 12347-12354.	2.5	31
196	Natural substrate assay for chitinases using high-performance liquid chromatography: A comparison with existing assays. Analytical Biochemistry, 2007, 363, 128-134.	2.4	43
197	Serratia marcescensChitinases with Tunnel-Shaped Substrate-Binding Grooves Show Endo Activity and Different Degrees of Processivity during Enzymatic Hydrolysis of Chitosanâ€. Biochemistry, 2006, 45, 9566-9574.	2.5	78
198	Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18089-18094.	7.1	238

#	Article	lF	CITATIONS
199	Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS Journal, 2006, 273, 491-503.	4.7	235
200	Identification of a High-Affinity-Binding Oligosaccharide by (+) Nanoelectrospray Quadrupole Time-of-Flight Tandem Mass Spectrometry of a Noncovalent Enzyme–Ligand Complex. Angewandte Chemie - International Edition, 2006, 45, 2429-2434.	13.8	36
201	Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 2005, 40, 1957-1966.	3.7	143
202	Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochemistry, 2005, 40, 3714-3722.	3.7	73
203	Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin–antitoxin-like plasmid maintenance system. Microbiology (United Kingdom), 2005, 151, 421-431.	1.8	40
204	Crystal Structure and Binding Properties of the Serratia marcescens Chitin-binding Protein CBP21. Journal of Biological Chemistry, 2005, 280, 11313-11319.	3.4	257
205	High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology (United Kingdom), 2005, 151, 2439-2449.	1.8	193
206	The Non-catalytic Chitin-binding Protein CBP21 from Serratia marcescens Is Essential for Chitin Degradation. Journal of Biological Chemistry, 2005, 280, 28492-28497.	3.4	321
207	Transcriptional analysis of bacteriocin production by malt isolateLactobacillus sakei5. FEMS Microbiology Letters, 2004, 235, 377-384.	1.8	16
208	Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. FEBS Journal, 2004, 271, 253-262.	0.2	164
209	Rational engineering of enzyme stability. Journal of Biotechnology, 2004, 113, 105-120.	3.8	408
210	Construction of vectors for inducible gene expression inLactobacillus sakeiandL. plantarum. FEMS Microbiology Letters, 2003, 229, 119-126.	1.8	125
211	Electrostatic interactions across the dimer-dimer interface contribute to the pH-dependent stability of a tetrameric malate dehydrogenase. FEBS Letters, 2003, 553, 423-426.	2.8	16
212	Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology (United) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 222
213	The cyclic dipeptide CI-4 [cyclo-(l-Arg-d-Pro)] inhibits family 18 chitinases by structural mimicry of a reaction intermediate. Biochemical Journal, 2002, 368, 23-27.	3.7	57
214	Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Molecular Microbiology, 2002, 37, 619-628.	2.5	58
215	Selection of mutations for increased protein stability. Current Opinion in Biotechnology, 2002, 13, 333-337.	6.6	116
216	Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek, 2002, 81, 639-654.	1.7	291

#	Article	IF	CITATIONS
217	The effect of changing the hydrophobic S1′ subsite of thermolysin-like proteases on substrate specificity. FEBS Journal, 2001, 268, 4985-4991.	0.2	20
218	Plantaricin A Is an Amphiphilic α-Helical Bacteriocin-like Pheromone Which Exerts Antimicrobial and Pheromone Activities through Different Mechanisms. Biochemistry, 1998, 37, 16026-16032.	2.5	83
219	Rendering One Autolysis Site in Bacillus Subtilis Neutral Protease Resistant to Cleavage Reveals a New Fission. Biotechnology and Applied Biochemistry, 1998, 27, 125-132.	3.1	5
220	Characterization of a chitinase gene (chiA) fromSerratia marcescensBJL200 and one-step purification of the gene product. FEMS Microbiology Letters, 1994, 124, 399-404.	1.8	82