Vincent G Eijsink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807655/publications.pdf Version: 2024-02-01

		13099	17105
220	17,411	68	122
papers	citations	h-index	g-index
231	231	231	10274
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides. Science, 2010, 330, 219-222.	12.6	1,059
2	Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 2012, 5, 45.	6.2	803
3	Production of Chitooligosaccharides and Their Potential Applications in Medicine. Marine Drugs, 2010, 8, 1482-1517.	4.6	496
4	Rational engineering of enzyme stability. Journal of Biotechnology, 2004, 113, 105-120.	3.8	408
5	Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nature Chemical Biology, 2017, 13, 1123-1128.	8.0	401
6	Extracellular electron transfer systems fuel cellulose oxidative degradation. Science, 2016, 352, 1098-1101.	12.6	368
7	Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6287-6292.	7.1	358
8	The Non-catalytic Chitin-binding Protein CBP21 from Serratia marcescens Is Essential for Chitin Degradation. Journal of Biological Chemistry, 2005, 280, 28492-28497.	3.4	321
9	Cleavage of cellulose by a CBM33 protein. Protein Science, 2011, 20, 1479-1483.	7.6	317
10	Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek, 2002, 81, 639-654.	1.7	291
11	A C4-oxidizing Lytic Polysaccharide Monooxygenase Cleaving Both Cellulose and Cello-oligosaccharides. Journal of Biological Chemistry, 2014, 289, 2632-2642.	3.4	281
12	Crystal Structure and Binding Properties of the Serratia marcescens Chitin-binding Protein CBP21. Journal of Biological Chemistry, 2005, 280, 11313-11319.	3.4	257
13	The chitinolytic machinery of <i><scp>S</scp>erratiaÂmarcescens</i> – a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS Journal, 2013, 280, 3028-3049.	4.7	244
14	Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8446-8451.	7.1	241
15	Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18089-18094.	7.1	238
16	NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18779-18784.	7.1	236
17	Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS Journal, 2006, 273, 491-503.	4.7	235
18	The Putative Endoglucanase PcGH61D from Phanerochaete chrysosporium Is a Metal-Dependent Oxidative Enzyme that Cleaves Cellulose. PLoS ONE, 2011, 6, e27807.	2.5	226

#	Article	IF	CITATIONS
19	Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiology and Molecular Biology Reviews, 2018, 82, .	6.6	204
20	Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microbial Biotechnology, 2015, 8, 815-827.	4.2	197
21	High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology (United Kingdom), 2005, 151, 2439-2449.	1.8	193
22	Metagenomics of the Svalbard Reindeer Rumen Microbiome Reveals Abundance of Polysaccharide Utilization Loci. PLoS ONE, 2012, 7, e38571.	2.5	190
23	Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnology for Biofuels, 2015, 8, 187.	6.2	187
24	Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Scientific Reports, 2015, 5, 18561.	3.3	180
25	Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. FEBS Journal, 2004, 271, 253-262.	0.2	164
26	Structural diversity of lytic polysaccharide monooxygenases. Current Opinion in Structural Biology, 2017, 44, 67-76.	5.7	162
27	Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium. Journal of Biological Chemistry, 2013, 288, 12828-12839.	3.4	158
28	Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity. Journal of Biological Chemistry, 2015, 290, 22955-22969.	3.4	157
29	A rapid quantitative activity assay shows that the <i>Vibrio cholerae</i> colonization factor GbpA is an active lytic polysaccharide monooxygenase. FEBS Letters, 2014, 588, 3435-3440.	2.8	155
30	Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. Journal of Chromatography A, 2013, 1271, 144-152.	3.7	151
31	The Vibrio cholerae Colonization Factor GbpA Possesses a Modular Structure that Governs Binding to Different Host Surfaces. PLoS Pathogens, 2012, 8, e1002373.	4.7	150
32	Towards new enzymes for biofuels: lessons from chitinase research. Trends in Biotechnology, 2008, 26, 228-235.	9.3	146
33	The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail. Biotechnology for Biofuels, 2018, 11, 209.	6.2	146
34	Lytic Polysaccharide Monooxygenases in Enzymatic Processing of Lignocellulosic Biomass. ACS Catalysis, 2019, 9, 4970-4991.	11.2	145
35	Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 2005, 40, 1957-1966.	3.7	143
36	Aromatic Residues in the Catalytic Center of Chitinase A from Serratia marcescens Affect Processivity, Enzyme Activity, and Biomass Converting Efficiency. Journal of Biological Chemistry, 2009, 284, 10610-10617.	3.4	142

#	Article	IF	CITATIONS
37	Kinetics of H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. Journal of Biological Chemistry, 2018, 293, 523-531.	3.4	130
38	Characterization of the Chitinolytic Machinery of Enterococcus faecalis V583 and High-Resolution Structure of Its Oxidative CBM33 Enzyme. Journal of Molecular Biology, 2012, 416, 239-254.	4.2	128
39	Effect of different steam explosion conditions on methane potential and enzymatic saccharification of birch. Bioresource Technology, 2013, 127, 343-349.	9.6	128
40	Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5922-5927.	7.1	126
41	Construction of vectors for inducible gene expression inLactobacillus sakeiandL. plantarum. FEMS Microbiology Letters, 2003, 229, 119-126.	1.8	125
42	Comparative Study of Two Chitin-Active and Two Cellulose-Active AA10-Type Lytic Polysaccharide Monooxygenases. Biochemistry, 2014, 53, 1647-1656.	2.5	124
43	On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). Biotechnology for Biofuels, 2019, 12, 58.	6.2	119
44	Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. Environmental Microbiology Reports, 2021, 13, 559-581.	2.4	119
45	Selection of mutations for increased protein stability. Current Opinion in Biotechnology, 2002, 13, 333-337.	6.6	116
46	Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 623-657.	3.0	109
47	Polysaccharide degradation by lytic polysaccharide monooxygenases. Current Opinion in Structural Biology, 2019, 59, 54-64.	5.7	105
48	Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus. Journal of Biological Chemistry, 2016, 291, 7300-7312.	3.4	103
49	The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation. Journal of Biological Chemistry, 2018, 293, 13006-13015.	3.4	100
50	Structural and Electronic Snapshots during the Transition from a Cu(II) to Cu(I) Metal Center of a Lytic Polysaccharide Monooxygenase by X-ray Photoreduction. Journal of Biological Chemistry, 2014, 289, 18782-18792.	3.4	99
51	A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes. Applied and Environmental Microbiology, 2016, 82, 6557-6572.	3.1	97
52	Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. Journal of Applied Phycology, 2012, 24, 1295-1301.	2.8	96
53	Methylation of the Nâ€ŧerminal histidine protects a lytic polysaccharide monooxygenase from autoâ€oxidative inactivation. Protein Science, 2018, 27, 1636-1650.	7.6	91
54	Simultaneous analysis of C1 and C4 oxidized oligosaccharides, the products of lytic polysaccharide monooxygenases acting on cellulose. Journal of Chromatography A, 2016, 1445, 46-54.	3.7	90

2

#	Article	IF	CITATIONS
55	Molecular mechanism of the chitinolytic peroxygenase reaction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1504-1513.	7.1	90
56	Hallmarks of Processivity in Glycoside Hydrolases from Crystallographic and Computational Studies of the Serratia marcescens Chitinases. Journal of Biological Chemistry, 2012, 287, 36322-36330.	3.4	89
57	Structural determinants of bacterial lytic polysaccharide monooxygenase functionality. Journal of Biological Chemistry, 2018, 293, 1397-1412.	3.4	89
58	Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. International Journal of Recycling of Organic Waste in Agriculture, 2018, 7, 49-58.	2.0	88
59	Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresource Technology, 2018, 249, 35-41.	9.6	86
60	Plantaricin A Is an Amphiphilic α-Helical Bacteriocin-like Pheromone Which Exerts Antimicrobial and Pheromone Activities through Different Mechanisms. Biochemistry, 1998, 37, 16026-16032.	2.5	83
61	Characterization of a chitinase gene (chiA) fromSerratia marcescensBJL200 and one-step purification of the gene product. FEMS Microbiology Letters, 1994, 124, 399-404.	1.8	82
62	Mutational Effects on Transglycosylating Activity of Family 18 Chitinases and Construction of a Hypertransglycosylating Mutant. Biochemistry, 2011, 50, 5693-5703.	2.5	82
63	Measuring Processivity. Methods in Enzymology, 2012, 510, 69-95.	1.0	80
64	Serratia marcescensChitinases with Tunnel-Shaped Substrate-Binding Grooves Show Endo Activity and Different Degrees of Processivity during Enzymatic Hydrolysis of Chitosanâ€. Biochemistry, 2006, 45, 9566-9574.	2.5	78
65	Multipoint Precision Binding of Substrate Protects Lytic Polysaccharide Monooxygenases from Self-Destructive Off-Pathway Processes. Biochemistry, 2018, 57, 4114-4124.	2.5	78
66	Hydrolysis of Brewers' Spent Grain by Carbohydrate Degrading Enzymes. Journal of the Institute of Brewing, 2008, 114, 306-314.	2.3	76
67	Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase. Protein Science, 2016, 25, 2175-2186.	7.6	75
68	Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochemistry, 2005, 40, 3714-3722.	3.7	73
69	A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnology for Biofuels, 2016, 9, 260.	6.2	70
70	Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology (United) Tj ETQq0 0 0 rgB1	Qverloc	k 10 Tf 50 14
71	A small lytic polysaccharide monooxygenase from <i>StreptomycesÂgriseus</i> targeting α―and β•hitin. FEBS Journal, 2015, 282, 1065-1079.	4.7	69

How a Lytic Polysaccharide Monooxygenase Binds Crystalline Chitin. Biochemistry, 2018, 57, 1893-1906. 2.5 68

#	Article	IF	CITATIONS
73	Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microbial Cell Factories, 2014, 13, 57.	4.0	63
74	Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria. Environmental Microbiology, 2016, 18, 38-49.	3.8	63
75	Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs). Nature Communications, 2020, 11, 5786.	12.8	63
76	Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases. Nature Communications, 2020, 11, 890.	12.8	63
77	The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action. Applied and Environmental Microbiology, 2018, 84, .	3.1	62
78	pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from <i>Gloeophyllum trabeum</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	62
79	Unraveling the roles of the reductant and free copper ions in LPMO kinetics. Biotechnology for Biofuels, 2021, 14, 28.	6.2	62
80	Kinetic insights into the role of the reductant in H2O2-driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. Journal of Biological Chemistry, 2019, 294, 1516-1528.	3.4	60
81	Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. Journal of Biotechnology, 2017, 246, 16-23.	3.8	59
82	Comparison of three seemingly similar lytic polysaccharide monooxygenases from Neurospora crassa suggests different roles in plant biomass degradation. Journal of Biological Chemistry, 2019, 294, 15068-15081.	3.4	59
83	Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Molecular Microbiology, 2002, 37, 619-628.	2.5	58
84	The cyclic dipeptide CI-4 [cyclo-(l-Arg-d-Pro)] inhibits family 18 chitinases by structural mimicry of a reaction intermediate. Biochemical Journal, 2002, 368, 23-27.	3.7	57
85	Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans FGSC A4. Scientific Reports, 2017, 7, 1746.	3.3	57
86	The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nature Communications, 2021, 12, 1230.	12.8	57
87	Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresource Technology, 2014, 171, 350-359.	9.6	56
88	Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs. Biotechnology for Biofuels, 2017, 10, 177.	6.2	56
89	Outer membrane vesicles from <i>Fibrobacter succinogenes</i> S85 contain an array of carbohydrateâ€active enzymes with versatile polysaccharideâ€degrading capacity. Environmental Microbiology, 2017, 19, 2701-2714.	3.8	55
90	Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus <i>Malbranchea cinnamomea</i> by Functional Characterization. Applied and Environmental Microbiology, 2019, 85, .	3.1	54

#	Article	IF	CITATIONS
91	Surface Display of N-Terminally Anchored Invasin by Lactobacillus plantarum Activates NF-κB in Monocytes. Applied and Environmental Microbiology, 2012, 78, 5864-5871.	3.1	53
92	Human Chitotriosidase-Catalyzed Hydrolysis of Chitosan. Biochemistry, 2012, 51, 487-495.	2.5	53
93	A new generation of versatile chromogenic substrates for high-throughput analysis of biomass-degrading enzymes. Biotechnology for Biofuels, 2015, 8, 70.	6.2	53
94	Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation. Biochemistry, 2017, 56, 2529-2532.	2.5	53
95	Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors. PLoS ONE, 2014, 9, e91125.	2.5	52
96	Fueling biomass-degrading oxidative enzymes by light-driven water oxidation. Green Chemistry, 2016, 18, 5357-5366.	9.0	52
97	Mode of action of acetylxylan esterases on acetyl glucuronoxylan and acetylated oligosaccharides generated by a GH10 endoxylanase. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5075-5086.	2.4	51
98	Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Scientific Reports, 2020, 10, 20267.	3.3	51
99	Expression and Characterization of Endochitinase C from <i>Serratia marcescens</i> BJL200 and Its Purification by a One-Step General Chitinase Purification Method. Bioscience, Biotechnology and Biochemistry, 2008, 72, 715-723.	1.3	50
100	Characterization and synergistic action of a tetraâ€modular lytic polysaccharide monooxygenase from <i>Bacillus cereus</i> . FEBS Letters, 2018, 592, 2562-2571.	2.8	48
101	Comparative Assessment of Enzymatic Hydrolysis for Valorization of Different Protein-Rich Industrial Byproducts. Journal of Agricultural and Food Chemistry, 2018, 66, 9738-9749.	5.2	48
102	Laccase-Catalyzed Oxidation of Lignin Induces Production of H ₂ O ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 831-841.	6.7	48
103	Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase. FEBS Journal, 2020, 287, 897-908.	4.7	47
104	<i>Fg</i> <scp>LPMO</scp> 9A from <i>Fusarium graminearum</i> cleaves xyloglucan independently of the backbone substitution pattern. FEBS Letters, 2016, 590, 3346-3356.	2.8	44
105	Natural substrate assay for chitinases using high-performance liquid chromatography: A comparison with existing assays. Analytical Biochemistry, 2007, 363, 128-134.	2.4	43
106	The chitinolytic system of <i>Lactococcus lactis</i> ssp. <i>lactis</i> comprises a nonprocessive chitinase and a chitinâ€binding protein that promotes the degradation of α―and βâ€chitin. FEBS Journal, 2009, 276, 2402-2415.	4.7	42
107	Conversion of α-Chitin Substrates with Varying Particle Size and Crystallinity Reveals Substrate Preferences of the Chitinases and Lytic Polysaccharide Monooxygenase of <i>Serratia marcescens</i> . Journal of Agricultural and Food Chemistry, 2013, 61, 11061-11066.	5.2	42
108	Mechanistic basis of substrate–O ₂ coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19178-19189.	7.1	42

#	Article	IF	CITATIONS
109	Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin–antitoxin-like plasmid maintenance system. Microbiology (United Kingdom), 2005, 151, 421-431.	1.8	40
110	Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Scientific Reports, 2014, 4, 5288.	3.3	39
111	Inhibition of a family 18 chitinase by chitooligosaccharides. Carbohydrate Polymers, 2008, 74, 41-49.	10.2	38
112	Development of enzyme cocktails for complete saccharification of chitin using mono-component enzymes from Serratia marcescens. Process Biochemistry, 2017, 56, 132-138.	3.7	38
113	Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System. Applied and Environmental Microbiology, 2019, 85, .	3.1	38
114	Microbial Protein Produced from Brown Seaweed and Spruce Wood as a Feed Ingredient. Journal of Agricultural and Food Chemistry, 2018, 66, 8328-8335.	5.2	37
115	Identification of a High-Affinity-Binding Oligosaccharide by (+) Nanoelectrospray Quadrupole Time-of-Flight Tandem Mass Spectrometry of a Noncovalent Enzyme–Ligand Complex. Angewandte Chemie - International Edition, 2006, 45, 2429-2434.	13.8	36
116	Determination of substrate binding energies in individual subsites of a family 18 chitinase. FEBS Letters, 2010, 584, 4581-4585.	2.8	36
117	Functional characterization of a lytic polysaccharide monooxygenase from the thermophilic fungus Myceliophthora thermophila. PLoS ONE, 2018, 13, e0202148.	2.5	36
118	The Metaproteomics Initiative: a coordinated approach for propelling the functional characterization of microbiomes. Microbiome, 2021, 9, 243.	11.1	36
119	Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts. PLoS ONE, 2019, 14, e0210208.	2.5	35
120	Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis. Journal of Proteomics, 2017, 156, 63-74.	2.4	34
121	Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens. Applied and Environmental Microbiology, 2017, 83, .	3.1	34
122	Demonstrationâ€scale enzymatic saccharification of sulfiteâ€pulped spruce with addition of hydrogen peroxide for <scp>LPMO</scp> activation. Biofuels, Bioproducts and Biorefining, 2020, 14, 734-745.	3.7	34
123	Structure and function of a CE4 deacetylase isolated from a marine environment. PLoS ONE, 2017, 12, e0187544.	2.5	34
124	Systems analysis of the glycoside hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions. Journal of Biological Chemistry, 2018, 293, 3849-3859.	3.4	33
125	Signatures of activation parameters reveal substrate-dependent rate determining steps in polysaccharide turnover by a family 18 chitinase. Carbohydrate Polymers, 2010, 81, 14-20.	10.2	32
126	Thermodynamic Analysis of Allosamidin Binding to a Family 18 Chitinase. Biochemistry, 2007, 46, 12347-12354.	2.5	31

#	Article	IF	CITATIONS
127	Heterologous expression of a recombinant lactobacillal β-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin P-based expression system. Microbial Cell Factories, 2015, 14, 30.	4.0	31
128	Structural and functional characterization of a small chitinâ€active lytic polysaccharide monooxygenase domain of a multiâ€modular chitinase from <i>Jonesia denitrificans</i> . FEBS Letters, 2016, 590, 34-42.	2.8	31
129	Production, Characterization, and Application of an Alginate Lyase, AMOR_PL7A, from Hot Vents in the Arctic Mid-Ocean Ridge. Journal of Agricultural and Food Chemistry, 2019, 67, 2936-2945.	5.2	31
130	Kinetic Characterization of a Putatively Chitin-Active LPMO Reveals a Preference for Soluble Substrates and Absence of Monooxygenase Activity. ACS Catalysis, 2021, 11, 11685-11695.	11.2	31
131	Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes. Biochemistry, 2021, 60, 3633-3643.	2.5	31
132	From proteins to polysaccharides: lifestyle and genetic evolution of <i>Coprothermobacter proteolyticus</i> . ISME Journal, 2019, 13, 603-617.	9.8	30
133	Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. Microbial Cell Factories, 2020, 19, 19.	4.0	30
134	Lactobacillus plantarum producing a Chlamydia trachomatis antigen induces a specific IgA response after mucosal booster immunization. PLoS ONE, 2017, 12, e0176401.	2.5	30
135	Enhanced in situ H2O2 production explains synergy between an LPMO with a cellulose-binding domain and a single-domain LPMO. Scientific Reports, 2022, 12, 6129.	3.3	30
136	The impact of reductants on the catalytic efficiency of a lytic polysaccharide monooxygenase and the special role of dehydroascorbic acid. FEBS Letters, 2022, 596, 53-70.	2.8	29
137	The Roles of Three <i>Serratia marcescens</i> Chitinases in Chitin Conversion Are Reflected in Different Thermodynamic Signatures of Allosamidin Binding. Journal of Physical Chemistry B, 2010, 114, 6144-6149.	2.6	28
138	Microbial community structure in a biogas digester utilizing the marine energy crop Saccharina latissima. 3 Biotech, 2013, 3, 407-414.	2.2	28
139	Proteomic investigation of the secretome of <i>Cellvibrio japonicus</i> during growth on chitin. Proteomics, 2016, 16, 1904-1914.	2.2	28
140	Display of a β-mannanase and a chitosanase on the cell surface of Lactobacillus plantarum towards the development of whole-cell biocatalysts. Microbial Cell Factories, 2016, 15, 169.	4.0	28
141	Genomic, proteomic and biochemical analysis of the chitinolytic machinery of Serratia marcescens BJL200. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 414-421.	2.3	28
142	Structural and functional characterization of a putative polysaccharide deacetylase of the human parasite <i>Encephalitozoon cuniculi</i> . Protein Science, 2009, 18, 1197-1209.	7.6	27
143	Glycan processing in gut microbiomes. Current Opinion in Microbiology, 2022, 67, 102143.	5.1	27
144	Lactobacillus plantarum displaying CCL3 chemokine in fusion with HIV-1 Gag derived antigen causes increased recruitment of T cells. Microbial Cell Factories, 2015, 14, 169.	4.0	26

#	Article	IF	CITATIONS
145	Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity. Journal of Biological Chemistry, 2019, 294, 19349-19364.	3.4	26
146	Metaproteomics: Sample Preparation and Methodological Considerations. Advances in Experimental Medicine and Biology, 2019, 1073, 187-215.	1.6	26
147	Spruce sugars and poultry hydrolysate as growth medium in repeated fed-batch fermentation processes for production of yeast biomass. Bioprocess and Biosystems Engineering, 2020, 43, 723-736.	3.4	26
148	Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity. PLoS ONE, 2020, 15, e0235642.	2.5	26
149	A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin. Journal of Biological Chemistry, 2020, 295, 9134-9146.	3.4	26
150	Directed evolution of a <i>Bacillus</i> chitinase. Biotechnology Journal, 2009, 4, 501-509.	3.5	25
151	Key Residues Affecting Transglycosylation Activity in Family 18 Chitinases: Insights into Donor and Acceptor Subsites. Biochemistry, 2018, 57, 4325-4337.	2.5	25
152	The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate. Biotechnology for Biofuels, 2019, 12, 235.	6.2	25
153	An endo-β-N-acetylglucosaminidase from Enterococcus faecalisV583 responsible for the hydrolysis of high-mannose and hybrid-type N-linked glycans. FEMS Microbiology Letters, 2011, 325, 123-129.	1.8	24
154	Surface display of an anti-DEC-205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo. Microbial Cell Factories, 2015, 14, 95.	4.0	24
155	Can we make Chitosan by Enzymatic Deacetylation of Chitin?. Molecules, 2019, 24, 3862.	3.8	24
156	Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine. PLoS ONE, 2015, 10, e0126694.	2.5	23
157	Aromatic-Mediated Carbohydrate Recognition in Processive <i>Serratia marcescens</i> Chitinases. Journal of Physical Chemistry B, 2016, 120, 1236-1249.	2.6	23
158	A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. Journal of Proteomics, 2016, 131, 104-112.	2.4	23
159	Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry. Methods in Molecular Biology, 2017, 1588, 71-92.	0.9	23
160	Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome. PLoS ONE, 2018, 13, e0197862.	2.5	23
161	Fungal PQQ-dependent dehydrogenases and their potential in biocatalysis. Current Opinion in Chemical Biology, 2019, 49, 113-121.	6.1	22
162	Comparison of Six Lytic Polysaccharide Monooxygenases from <i>Thermothielavioides terrestris</i> Shows That Functional Variation Underlies the Multiplicity of LPMO Genes in Filamentous Fungi. Applied and Environmental Microbiology, 2022, 88, aem0009622.	3.1	22

#	Article	IF	CITATIONS
163	Substrate positioning in chitinase A, a processive chito-biohydrolase fromSerratia marcescens. FEBS Letters, 2011, 585, 2339-2344.	2.8	21
164	Analysis of productive binding modes in the human chitotriosidase. FEBS Letters, 2013, 587, 3508-3513.	2.8	21
165	The effect of the carbohydrate binding module on substrate degradation by the human chitotriosidase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1494-1501.	2.3	21
166	Identification and characterization of a hyperthermophilic GH9 cellulase from the Arctic Mid-Ocean Ridge vent field. PLoS ONE, 2019, 14, e0222216.	2.5	21
167	The effect of changing the hydrophobic S1′ subsite of thermolysin-like proteases on substrate specificity. FEBS Journal, 2001, 268, 4985-4991.	0.2	20
168	Thermodynamics of tunnel formation upon substrate binding in a processive glycoside hydrolase. Archives of Biochemistry and Biophysics, 2017, 620, 35-42.	3.0	20
169	A thermostable bacterial lytic polysaccharide monooxygenase with high operational stability in a wide temperature range. Biotechnology for Biofuels, 2020, 13, 194.	6.2	20
170	In situ measurements of oxidation–reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose. Biotechnology for Biofuels, 2021, 14, 46.	6.2	20
171	Analytical Tools for Characterizing Cellulose-Active Lytic Polysaccharide Monooxygenases (LPMOs). Methods in Molecular Biology, 2018, 1796, 219-246.	0.9	19
172	Processivity and substrate-binding in family 18 chitinases. Biocatalysis and Biotransformation, 2012, 30, 353-365.	2.0	18
173	On the Determination of Water Content in Biomass Processing. Bioenergy Research, 2014, 7, 442-449.	3.9	18
174	Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity. Carbohydrate Research, 2019, 473, 66-71.	2.3	18
175	Inactivated Lactobacillus plantarum Carrying a Surface-Displayed Ag85B-ESAT-6 Fusion Antigen as a Booster Vaccine Against Mycobacterium tuberculosis Infection. Frontiers in Immunology, 2019, 10, 1588.	4.8	17
176	Oxidation-reduction potential (ORP) as a tool for process monitoring of H2O2/LPMO assisted enzymatic hydrolysis of cellulose. Process Biochemistry, 2019, 86, 89-97.	3.7	17
177	Alginate Degradation: Insights Obtained through Characterization of a Thermophilic Exolytic Alginate Lyase. Applied and Environmental Microbiology, 2021, 87, .	3.1	17
178	Sugar oxidoreductases and LPMOs – two sides of the same polysaccharide degradation story?. Carbohydrate Research, 2021, 505, 108350.	2.3	17
179	Electrostatic interactions across the dimer-dimer interface contribute to the pH-dependent stability of a tetrameric malate dehydrogenase. FEBS Letters, 2003, 553, 423-426.	2.8	16
180	Transcriptional analysis of bacteriocin production by malt isolateLactobacillus sakei5. FEMS Microbiology Letters, 2004, 235, 377-384.	1.8	16

#	Article	IF	CITATIONS
181	Structural and functional variation of chitin-binding domains of a lytic polysaccharide monooxygenase from Cellvibrio japonicus. Journal of Biological Chemistry, 2021, 297, 101084.	3.4	16
182	Comparison of eight Lactobacillus species for delivery of surface-displayed mycobacterial antigen. Vaccine, 2019, 37, 6371-6379.	3.8	15
183	Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa. Applied and Environmental Microbiology, 2021, 87, e0165221.	3.1	15
184	Tailoring Hydrothermal Vent Biodiversity Toward Improved Biodiscovery Using a Novel in situ Enrichment Strategy. Frontiers in Microbiology, 2020, 11, 249.	3.5	14
185	Impact of down-stream processing on functional properties of yeasts and the implications on gut health of Atlantic salmon (Salmo salar). Scientific Reports, 2021, 11, 4496.	3.3	14
186	1H, 13C, 15N resonance assignment of the chitin-active lytic polysaccharide monooxygenase BlLPMO10A from Bacillus licheniformis. Biomolecular NMR Assignments, 2015, 9, 207-210.	0.8	13
187	Antibiotic saving effect of combination therapy through synergistic interactions between well-characterized chito-oligosaccharides and commercial antifungals against medically relevant yeasts. PLoS ONE, 2019, 14, e0227098.	2.5	13
188	Analysis of Four Chitin-Active Lytic Polysaccharide Monooxygenases from Streptomyces griseus Reveals Functional Variation. Journal of Agricultural and Food Chemistry, 2020, 68, 13641-13650.	5.2	13
189	Engineering lytic polysaccharide monooxygenases (LPMOs). Methods in Enzymology, 2020, 644, 1-34.	1.0	12
190	Synthesis of glycoconjugates utilizing the regioselectivity of a lytic polysaccharide monooxygenase. Scientific Reports, 2020, 10, 13197.	3.3	12
191	Dissecting factors that contribute to ligand-binding energetics for family 18 chitinases. Thermochimica Acta, 2010, 511, 189-193.	2.7	11
192	Challenges and opportunities in mimicking non-enzymatic brown-rot decay mechanisms for pretreatment of Norway spruce. Wood Science and Technology, 2019, 53, 291-311.	3.2	11
193	Anchoring of heterologous proteins in multiple Lactobacillus species using anchors derived from Lactobacillus plantarum. Scientific Reports, 2020, 10, 9640.	3.3	11
194	The use of lytic polysaccharide monooxygenases in anaerobic digestion of lignocellulosic materials. Biotechnology for Biofuels, 2019, 12, 270.	6.2	10
195	Using chitosan to understand chitinases and the role of processivity in the degradation of recalcitrant polysaccharides. Reactive and Functional Polymers, 2020, 148, 104488.	4.1	10
196	Changes in the composition of the main polysaccharide groups of oil seed rape straw following steam explosion and saccharification. Biomass and Bioenergy, 2014, 61, 121-130.	5.7	9
197	Chemoenzymatic Synthesis of Chito-oligosaccharides with Alternating <i>N</i> - <scp>d</scp> -Acetylglucosamine and <scp>d</scp> -Glucosamine. Biochemistry, 2020, 59, 4581-4590.	2.5	9
198	Structural insights of the enzymes from the chitin utilization locus of Flavobacterium johnsoniae. Scientific Reports, 2020, 10, 13775.	3.3	9

#	Article	IF	CITATIONS
199	Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1448-1452.	0.8	8
200	Backbone and side-chain 1H, 13C, and 15N chemical shift assignments for the apo-form of the lytic polysaccharide monooxygenase NcLPMO9C. Biomolecular NMR Assignments, 2016, 10, 277-280.	0.8	8
201	Chemical shift assignments for the apo-form of the catalytic domain, the linker region, and the carbohydrate-binding domain of the cellulose-active lytic polysaccharide monooxygenase ScLPMO10C. Biomolecular NMR Assignments, 2017, 11, 257-264.	0.8	7
202	Structural and Thermodynamic Signatures of Ligand Binding to the Enigmatic Chitinase D of <i>Serratia proteamaculans</i> . Journal of Physical Chemistry B, 2019, 123, 2270-2279.	2.6	7
203	Fungal Lytic Polysaccharide Monooxygenases (LPMOs): Biological Importance and Applications. , 2021, , 281-294.		7
204	Chromatographic analysis of oxidized cello-oligomers generated by lytic polysaccharide monooxygenases using dual electrolytic eluent generation. Journal of Chromatography A, 2022, 1662, 462691.	3.7	7
205	2-Naphthol Impregnation Prior to Steam Explosion Promotes LPMO-Assisted Enzymatic Saccharification of Spruce and Yields High-Purity Lignin. ACS Sustainable Chemistry and Engineering, 2022, 10, 5233-5242.	6.7	7
206	The directionality of processive enzymes acting on recalcitrant polysaccharides is reflected in the kinetic signatures of oligomer degradation. FEBS Letters, 2015, 589, 1807-1812.	2.8	5
207	Rendering One Autolysis Site in Bacillus Subtilis Neutral Protease Resistant to Cleavage Reveals a New Fission. Biotechnology and Applied Biochemistry, 1998, 27, 125-132.	3.1	5
208	Characterization of a lytic polysaccharide monooxygenase from Aspergillus fumigatus shows functional variation among family AA11 fungal LPMOs. Journal of Biological Chemistry, 2021, 297, 101421.	3.4	5
209	Polar residues lining the binding cleft of a Serratia marcescens family 18 chitinase position the substrate for attack and stabilize associative interactions. Molecular Physics, 2019, 117, 3664-3682.	1.7	4
210	Genomic and Proteomic Study of Andreprevotia ripae Isolated from an Anthill Reveals an Extensive Repertoire of Chitinolytic Enzymes. Journal of Proteome Research, 2021, 20, 4041-4052.	3.7	3
211	The Role of Lytic Polysaccharide Monooxygenases in Wood Rotting Basidiomycetes. Trends in Glycoscience and Glycotechnology, 2020, 32, E135-E143.	0.1	3
212	Heterologous Protein Production in Lactobacillus (plantarum) Using pSIP Vectors. Methods in Molecular Biology, 2022, 2406, 205-217.	0.9	3
213	Comparison of the Immunogenic Properties of Lactiplantibacillus plantarum Carrying the Mycobacterial Ag85B-ESAT-6 Antigen at Various Cellular Localizations. Frontiers in Microbiology, 2022, 13, .	3.5	3
214	EF0176 and EF0177 from Enterococcus faecalis V583 are substrate-binding lipoproteins involved in ABC transporter mediated ribonucleoside uptake. Microbiology (United Kingdom), 2015, 161, 754-764.	1.8	2
215	Resonance assignments for the apo-form of the cellulose-active lytic polysaccharide monooxygenase TaLPMO9A. Biomolecular NMR Assignments, 2018, 12, 357-361.	0.8	2
216	1H, 13C, 15N resonance assignment of the apo form of the small, chitin-active lytic polysaccharide monooxygenase JdLPMO10A from Jonesia denitrificans. Biomolecular NMR Assignments, 2021, 15, 79-84.	0.8	1

#	Article	IF	CITATIONS
217	Fecal Excretion and Whole-Body Retention of Macro and Micro Minerals in Atlantic Salmon Fed Torula Yeast Grown on Sugar Kelp Hydrolysate. Animals, 2021, 11, 2409.	2.3	1
218	Chromatographic Assays for the Enzymatic Degradation of Chitin. Bio-protocol, 2021, 11, e4014.	0.4	1
219	Thermodynamic insights into the role of aromatic residues in chitooligosaccharide binding to the transglycosylating chitinase-D from Serratia proteamaculans. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140414.	2.3	Ο
220	The Role of Lytic Polysaccharide Monooxygenases in Wood Rotting Basidiomycetes. Trends in Glycoscience and Glycotechnology, 2020, 32, J111-J119.	0.1	0