
Mario Casciola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6807295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C). Journal of Membrane Science, 2001, 185, 73-81.	8.2	578
2	Composite Membranes for Medium-Temperature PEM Fuel Cells. Annual Review of Materials Research, 2003, 33, 129-154.	9.3	488
3	Layered and pillared metal(IV) phosphates and phosphonates. Advanced Materials, 1996, 8, 291-303.	21.0	391
4	Solid state protonic conductors, present main applications and future prospects. Solid State Ionics, 2001, 145, 3-16.	2.7	378
5	Inorganic ion-exchange pellicles obtained by delamination of α-zirconium phosphate crystals. Journal of Colloid and Interface Science, 1985, 107, 256-263.	9.4	212
6	On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 2006, 162, 141-145.	7.8	198
7	Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochimica Acta, 2007, 52, 8125-8132.	5.2	164
8	Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. Journal of Power Sources, 2013, 233, 216-230.	7.8	148
9	Layered metalIV phosphonates, a large class of inorgano-organic proton conductors. Solid State Ionics, 1997, 97, 177-186.	2.7	142
10	Intercalation and grafting of hydrogen phosphates and phosphonates into synthetic hydrotalcites and a.cconductivity of the compounds thereby obtained. Solid State Ionics, 1997, 97, 203-212.	2.7	112
11	Protonic conductivity of layered zirconium phosphonates containing â [°] SO3H groups. I. Preparation and characterization of a mixed zirconium phosphonate of composition $Zr(O3PR)0.73(O3PRa\in^2)1.27AnH2O$, with R=â [°] C6H4â [°] SO3H and Ra \in^2 = â [°] CH2â [°] OH. Solid State Ionics, 1992, 50, 315-322.	2.7	105
12	Sulfonated PEEK-WC membranes for possible fuel cell applications. Journal of Membrane Science, 2004, 228, 139-148.	8.2	105
13	On the mechanism of diffusion and ionic transport in crystalline insoluble acid salts of tetravalent metals—I Electrical conductance of zirconium bis (monohydrogen ortho-phosphate) monohydrate with a layered structure. Journal of Inorganic and Nuclear Chemistry, 1978, 40, 533-537.	0.5	99
14	Inorgano-organic proton conducting membranes for fuel cells and sensors at medium temperatures. Journal of Membrane Science, 2000, 172, 233-239.	8.2	98
15	Protonic conductivity of layered zirconium phosphonates containing —SO3H groups. III. Preparation and characterization of γ-zirconium sulfoaryl phosphonates. Solid State Ionics, 1996, 84, 97-104.	2.7	90
16	Mixed Membrane Matrices Based on Nafion/UiO-66/SO ₃ H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS Applied Materials & Interfaces, 2017, 9, 42239-42246.	8.0	90
17	Survey on the Phase Transitions and Their Effect on the Ion-Exchange and on the Proton-Conduction Properties of a Flexible and Robust Zr Phosphonate Coordination Polymer. Inorganic Chemistry, 2012, 51, 6992-7000.	4.0	89
18	Protonic conductivity of layered zirconium phosphonates containing -SO3H groups. II. Ac conductivity of zirconium alkyl-sulphophenyl phosphonates in the range 100–200°C, in the presence or absence of water vapour. Solid State Ionics, 1992, 58, 339-344.	2.7	80

#	Article	IF	CITATIONS
19	Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO2. Journal of Membrane Science, 2011, 369, 536-544.	8.2	78
20	Proton conductivity of mesoporous zirconium phosphate pyrophosphate. Solid State Ionics, 1999, 125, 91-97.	2.7	76
21	Preparation, characterization and proton conductivity of titanium phosphate sulfophenylphosphonate. Solid State Ionics, 2001, 145, 249-255.	2.7	75
22	ac conductivity of anhydrous pellicular zirconium phosphate in hydrogen form. Solid State Ionics, 1984, 14, 289-295.	2.7	71
23	New Preparation Methods for Composite Membranes for Medium Temperature Fuel Cells Based on Precursor Solutions of Insoluble Inorganic Compounds. Fuel Cells, 2005, 5, 366-374.	2.4	71
24	A Layered Mixed Zirconium Phosphate/Phosphonate with Exposed Carboxylic and Phosphonic Groups: X-ray Powder Structure and Proton Conductivity Properties. Inorganic Chemistry, 2014, 53, 13220-13226.	4.0	71
25	Nafion–Zirconium Phosphate Nanocomposite Membranes with High Filler Loadings: Conductivity and Mechanical Properties. Fuel Cells, 2008, 8, 217-224.	2.4	65
26	Frequency response of polycrystalline samples of αâ^'Zr(HPO4)2·H2O at different relative humidities. Solid State Ionics, 1985, 17, 287-293.	2.7	64
27	Preparation and characterisation of $\hat{I}\pm$ -layered zirconium phosphate sulfophenylenphosphonates with variable concentration of sulfonic groups. Solid State Ionics, 2005, 176, 2893-2898.	2.7	62
28	Preparation of Î ³ -zirconium phosphate microcrystals with high degree of crystallinity and proton conductivity of their hydrogen and ammonium forms. Reactive & Functional Polymers, 1989, 11, 245-252.	0.8	60
29	Advances in the Chemistry of Nanosized Zirconium Phosphates: A New Mild and Quick Route to the Synthesis of Nanocrystals. Inorganic Chemistry, 2011, 50, 11623-11630.	4.0	60
30	Gels of zirconium phosphate in organic solvents and their use for the preparation of polymeric nanocomposites. Journal of Materials Chemistry, 2005, 15, 4262.	6.7	57
31	Preparation and characterization of sulfonated PEEK-WC membranes for fuel cell applications. Journal of Power Sources, 2006, 160, 139-147.	7.8	56
32	Preparation, structural characterization and conductivity of LiZr2(PO4)3. Solid State Ionics, 1988, 26, 229-235.	2.7	53
33	Crystalline insoluble acid salts of tetravalent metals—XXI ion exchange mechanism of alkaline earth metal. Journal of Inorganic and Nuclear Chemistry, 1976, 38, 843-848.	0.5	50
34	Proton conductivity of zirconium carboxy n-alkyl phosphonates with an α-layered structure. Solid State lonics, 1991, 46, 61-68.	2.7	48
35	Conductivity and Methanol Permeability of Nafion–Zirconium Phosphate Composite Membranes Containing High Aspect Ratio Filler Particles. Fuel Cells, 2009, 9, 394-400.	2.4	48
36	Synthesis, Crystal Structure, and Proton Conductivity of One-Dimensional, Two-Dimensional, and Three-Dimensional Zirconium Phosphonates Based on Glyphosate and Glyphosine. Inorganic Chemistry, 2013, 52, 12131-12139.	4.0	47

#	Article	IF	CITATIONS
37	Relative humidity influence on proton conduction of hydrated pellicular zirconium phosphate in hydrogen formâ ⁻ †. Solid State Ionics, 1986, 20, 69-73.	2.7	46
38	Preparation and proton conductivity of composite ionomeric membranes obtained from gels of amorphous zirconium phosphate sulfophenylenphosphonates in organic solvents. Journal of Materials Chemistry, 2004, 14, 1910.	6.7	46
39	Intercalation of α,ï‰-alkyldiamines in layered α-zirconium phosphate and the inclusion behaviour of some of the intercalates obtained. Journal of Inclusion Phenomena, 1988, 6, 291-306.	0.6	44
40	Anionic conducting composite membranes based on aromatic polymer and layered double hydroxides. International Journal of Hydrogen Energy, 2017, 42, 3197-3205.	7.1	44
41	Synthesis and characterization of new zirconium 4-sulfophenylphosphonates. Solid State Ionics, 2010, 181, 705-713.	2.7	43
42	Methanol permeability and performance of Nafion–zirconium phosphate composite membranes in active and passive direct methanol fuel cells. Journal of Power Sources, 2010, 195, 7751-7756.	7.8	42
43	Organically Modified Zirconium Phosphate by Reaction with 1,2-Epoxydodecane as Host Material for Polymer Intercalation: Synthesis and Physicochemical Characterization. Inorganic Chemistry, 2010, 49, 3329-3336.	4.0	41
44	High Yield Precipitation of Crystalline α-Zirconium Phosphate from Oxalic Acid Solutions. Inorganic Chemistry, 2010, 49, 9409-9415.	4.0	41
45	High performance sulfonated aromatic ionomers byÂsolvothermal macromolecular synthesis. International Journal of Hydrogen Energy, 2012, 37, 8672-8680.	7.1	41
46	Nanosized zirconium phosphate/AgCl composite materials: a new synergy for efficient photocatalytic degradation of organic dye pollutants. Journal of Materials Chemistry A, 2015, 3, 5525-5534.	10.3	41
47	Water Activity Coefficient and Proton Mobility in Hydrated Acidic Polymers. Journal of the Electrochemical Society, 2011, 158, B159.	2.9	38
48	Intercalation compounds of $\hat{l}\pm$ -zirconium hydrogen phosphate with heterocyclic bases and their ac conductivity. Solid State Ionics, 1991, 46, 53-59.	2.7	37
49	Zirconium 2-amino ethyl phosphonate: Preparation, characterization and preliminary study of its electrical conductivity and intercalation properties. Solid State Ionics, 1995, 77, 229-233.	2.7	37
50	Nanocomposite membranes made of zirconium phosphate sulfophenylenphosphonate dispersed in polyvinylidene fluoride: Preparation and proton conductivity. Solid State Ionics, 2005, 176, 2985-2989.	2.7	37
51	Preparation, Proton Conductivity and Mechanical Properties of Nafion 117–Zirconium Phosphate Sulphophenylphosphonate Composite Membranes. Fuel Cells, 2009, 9, 381-386.	2.4	37
52	Temperature-Dependent Dynamics of Water Confined in Nafion Membranes. Journal of Physical Chemistry B, 2006, 110, 13769-13776.	2.6	36
53	Self-assembled nanocomposite organic–inorganic proton conducting sulfonated poly-ether-ether-ketone (SPEEK)-based membranes: Optimized mechanical, thermal and electrical properties. Journal of Power Sources, 2009, 192, 353-359.	7.8	36
54	From microcrystalline to nanosized α-zirconium phosphate: Synthetic approaches and applications of an old material with a bright future. Coordination Chemistry Reviews, 2018, 374, 218-235.	18.8	36

4

#	Article	IF	CITATIONS
55	Influence of the guest molecules on the protonic conduction of anhydrous intercalation compounds of α-Zirconium hydrogen phosphate with diamines. Solid State Ionics, 1989, 35, 67-71.	2.7	35
56	Proton-conducting solid dispersions of silica and zirconium phosphate pyrophosphate. Journal of Materials Chemistry, 1995, 5, 1809.	6.7	35
57	Waterâ€Mediated Proton Conduction in a Robust Triazolyl Phosphonate Metal–Organic Framework with Hydrophilic Nanochannels. Chemistry - A European Journal, 2014, 20, 8862-8866.	3.3	35
58	Preparation and characterization of zirconium phosphate phosphonates, ZrPO4(H2PO4)1-x(RPO2OH)x.nH2O, with .gammalayer structure (R = CH3, C3H7, C6H11). Inorganic Chemistry, 1993, 32, 4600-4604.	4.0	34
59	Ionic and covalent crosslinking in chitosan-succinic acid membranes: Effect on physicochemical properties. Carbohydrate Polymers, 2021, 251, 117106.	10.2	34
60	Protonic conduction of intercolation compounds of $\hat{l}\pm$ -zirconium phosphate with propylamine. Solid State Ionics, 1986, 22, 127-133.	2.7	33
61	Amperometric sensor for carbon monoxide based on solid state protonic conduction. Solid State Ionics, 1993, 61, 241-244.	2.7	33
62	Title is missing!. Journal of Porous Materials, 1999, 6, 299-305.	2.6	33
63	Crystalline insoluble acid salts of tetravalent metals—XXXIV. Journal of Inorganic and Nuclear Chemistry, 1980, 42, 1637-1640.	0.5	32
64	Cross-linked sulfonated aromatic ionomers via SO 2 bridges: Conductivity properties. Journal of Power Sources, 2013, 243, 488-493.	7.8	32
65	Looking for New Hybrid Polymer Fillers: Synthesis of Nanosized α-Type Zr(IV) Organophosphonates through an Unconventional Topotactic Anion Exchange Reaction. Inorganic Chemistry, 2013, 52, 7680-7687.	4.0	30
66	Preparation, structural characterization and conductivity of LiTixZr2â^'x(PO4)3. Solid State Ionics, 1990, 37, 281-287.	2.7	29
67	Short side chain perfluorosulfonic acid membranes and their composites with nanosized zirconium phosphate: hydration, mechanical properties and proton conductivity. Journal of Materials Chemistry, 2012, 22, 24902.	6.7	29
68	New approach for the evaluation of membranes transport properties for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2012, 205, 222-230.	7.8	29
69	Layered zirconium alkylphosphates: Suitable materials for novel PFSA composite membranes with improved proton conductivity and mechanical stability. Journal of Membrane Science, 2014, 462, 42-49.	8.2	29
70	Crystalline insoluble acid salts of tetravalent metals. Journal of Chromatography A, 1976, 128, 289-299.	3.7	28
71	Inorganic ion exchange membranes consisting of microcrystals of zirconium phosphate supported by Kynar®. Journal of Membrane Science, 1978, 3, 179-190.	8.2	28
72	De-Ethylation and Cleavage of Rhodamine B by a Zirconium Phosphate/Silver Bromide Composite Photocatalyst. Catalysts, 2019, 9, 3.	3.5	28

#	Article	IF	CITATIONS
73	ac conductivity of α-layered zirconium phosphate in the presence of water vapour at 100–200°C. Solid State Ionics, 1993, 61, 125-129.	2.7	27
74	Preparation and some properties of Zr phosphate hypophosphite and Zr phosphate dimethylphosphinate with γ-layered structure. Inorganica Chimica Acta, 1992, 201, 207-212.	2.4	26
75	Potentiometric sensor for oxygen based on O2_H2 mixed potential of a composite Pt-metal hydride electrode. Solid State Ionics, 1992, 52, 291-295.	2.7	26
76	Vibrational spectroscopic characterisation of protonic conducting polyethyleneimine-α- and γ-zirconium phosphate nanocomposites. Solid State Ionics, 1997, 97, 261-267.	2.7	26
77	Inorganic ion-exchange membranes made of acid salts of tetravalent metals. A short review. Journal of Membrane Science, 1983, 16, 137-149.	8.2	24
78	Preparation of Nanoâ€5tructured Polymeric Proton Conducting Membranes for Use in Fuel Cells. Annals of the New York Academy of Sciences, 2003, 984, 208-225.	3.8	24
79	Epoxy-nanocomposites containing exfoliated zirconium phosphate: Preparation via cationic photopolymerisation and physicochemical characterisation. European Polymer Journal, 2009, 45, 2487-2493.	5.4	24
80	Conductivity and hydration of sulfonated polyethersulfone in the range 70–120°C: Effect of temperature and relative humidity cycling. Journal of Power Sources, 2012, 205, 145-150.	7.8	24
81	Layered Metal(IV) Phosphonates with Rigid Pendant Groups: New Synthetic Approaches to Nanosized Zirconium Phosphate Phenylphosphonates. Inorganic Chemistry, 2014, 53, 2222-2229.	4.0	24
82	A critical investigation of the effect of hygrothermal cycling on hydration and in-plane/through-plane proton conductivity of Nafion 117 at medium temperature (70–130°C). Journal of Power Sources, 2013, 235, 129-134.	7.8	23
83	Electrochemical and spectroscopic characterisation of barium acid salts of 3,5-disulfophenylphosphonic acid. Journal of Materials Chemistry, 1998, 8, 961-964.	6.7	21
84	Double filler reinforced ionomers: a new approach to the design of composite membranes for fuel cell applications. Journal of Materials Chemistry A, 2015, 3, 23530-23538.	10.3	21
85	Intercalation compounds of zirconium phosphates with substituted pyrazoles and imidazoles and their ac conductivity. Solid State Ionics, 1993, 61, 245-250.	2.7	20
86	Measurement of the Young's modulus of Nafion membranes by Brillouin light scattering. Journal of Power Sources, 2010, 195, 7761-7764.	7.8	20
87	Promising Aquivion Composite Membranes based on Fluoroalkyl Zirconium Phosphate for Fuel Cell Applications. ChemSusChem, 2014, 7, 2176-2184.	6.8	20
88	Zirconium phosphate reinforced short side chain perflurosulfonic acid membranes for medium temperature proton exchange membrane fuel cell application. Journal of Power Sources, 2014, 262, 407-413.	7.8	20
89	Ionic conduction of γ-titanium phosphate in hydrogen and alkali metal salt formsâ~†. Solid State Ionics, 1982, 7, 243-247.	2.7	19
90	NMR investigation on molecular mobility of pyrazole and pyridazineintercalated in layered α-zirconium phosphate. Solid State Ionics, 1994, 68, 105-110.	2.7	19

#	Article	IF	CITATIONS
91	Preparation and properties of nafion membranes containing nanoparticles of zirconium phosphate. Desalination, 2006, 199, 280-282.	8.2	19
92	Carboxymethylcellulose films containing chlorhexidine–zirconium phosphate nanoparticles: antibiofilm activity and cytotoxicity. RSC Advances, 2016, 6, 46249-46257.	3.6	19
93	On the evolution of proton conductivity of Aquivion membranes loaded with CeO2 based nanofillers: Effect of temperature and relative humidity. Journal of Membrane Science, 2019, 574, 17-23.	8.2	19
94	Protonic conduction of polyhydrated phases obtained from colloidal dispersions of α-zirconium. Solid State Ionics, 1989, 32-33, 40-44.	2.7	18
95	Ac and dc conductivity study of natural zeolitic material of the clinoptilolite type and its iodine forms. Solid State Ionics, 1993, 66, 189-194.	2.7	18
96	Starch/zirconium phosphate composite films: Hydration, thermal stability, and mechanical properties. Starch/Staerke, 2012, 64, 237-245.	2.1	18
97	Small is Beautiful: The Unusual Transformation of Nanocrystalline Layered α-Zirconium Phosphate into a New 3D Structure. Inorganic Chemistry, 2015, 54, 9146-9153.	4.0	18
98	Silica–zirconium phosphate–phosphoric acid composites: preparation, proton conductivity and use in gas sensors. Solid State Ionics, 2004, 166, 19-25.	2.7	16
99	Effects of water freezing on the mechanical properties of nafion membranes. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1421-1425.	2.1	16
100	Reactive coaxial electrospinning of ZrP/ZrO2 nanofibres. Journal of Materials Chemistry A, 2014, 2, 13359-13365.	10.3	16
101	Ion exchange of some divalent and trivalent cations on the surface of zirconium acid phosphate micro-crystals. Journal of Chromatography A, 1978, 160, 109-115.	3.7	15
102	Use of solid state protonic conductors for oxygen potentiometric sensor at room temperature. Solid State Ionics, 1991, 46, 183-186.	2.7	15
103	Frequency response of polycrystalline samples of α-Zr(HPO4)2·H2O with different relative densitiesâ~†. Solid State Ionics, 1985, 17, 7-12.	2.7	14
104	Electrical-Transport Properties of Hydrated and Anhydrous Vanadyl Phosphate in the Temperature Range 20â^'200 °C. Chemistry of Materials, 1996, 8, 2505-2509.	6.7	14
105	Characterization of Zr Phosphate/PVDF Nanocomposites by Vibrational Spectroscopy. Macromolecular Symposia, 2005, 230, 95-104.	0.7	14
106	Structural aspects of the dehydration of α-Zr(HPO4)2 · H2O. Solid State Ionics, 1995, 77, 55-62.	2.7	13
107	Polyvinylidene fluoride/zirconium phosphate sulfophenylphosphonate nanocomposite films: microstructure and mechanical properties. Journal of Materials Chemistry, 2008, 18, 4291.	6.7	13
108	A new polyfunctional acid material for solid state proton conductivity in dry environment: Nafion doped with difluoromethandiphosphonic acid. Solid State Ionics, 2010, 181, 578-585.	2.7	13

#	Article	IF	CITATIONS
109	Vibrational spectra and H-bondings in anhydrous and monohydrate α-Zr phosphates. Journal of Solid State Chemistry, 2007, 180, 1198-1208.	2.9	12
110	Dynamic nuclear polarisation NMR of nanosized zirconium phosphate polymer fillers. Chemical Communications, 2014, 50, 10137-10139.	4.1	12
111	A combined strategy for the synthesis of double functionalized α-zirconium phosphate organic derivatives. New Journal of Chemistry, 2016, 40, 8390-8396.	2.8	12
112	From layered zirconium phosphates and phosphonates to nanofillers for ionomeric membranes. Solid State Ionics, 2019, 336, 1-10.	2.7	12
113	Study of proton-metal ion conduction in polyhydrated α-ZrHMg0.5(PO4)2 and α-ZrH0.5Cr0.5(PO4)2 by ac/dc conductivity and EMF measurements. Solid State Ionics, 1991, 46, 129-133.	2.7	11
114	Crystallite formation effect on the physicochemical properties of SPEEK membranes for fuel cell application. International Journal of Hydrogen Energy, 2018, 43, 5175-5183.	7.1	11
115	Layered double hydroxide and zirconium phosphate as ion exchangers for the removal of †black crusts' from the surface of ancient monuments. Dalton Transactions, 2018, 47, 2976-2985.	3.3	11
116	AgCl-ZnAl Layered Double Hydroxides as Catalysts with Enhanced Photodegradation and Antibacterial Activities. Inorganics, 2019, 7, 120.	2.7	11
117	Crystalline insoluble acid salts of tetravalent metals—XXXI. Journal of Inorganic and Nuclear Chemistry, 1979, 41, 1047-1052.	0.5	10
118	Dielectric properties of α-zirconium phosphate and its organic derivativesâ~†. Solid State Ionics, 1983, 8, 27-34.	2.7	10
119	Preparation and characterization of a composite of silver iodide and synthetic zeolite ZSM5. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1996, 25, 303-312.	1.6	10
120	Intercalation Compounds of Vanadyl Phosphate Dihydrate with Rubidium Ion and Their Electrical Properties. Chemistry of Materials, 1999, 11, 3258-3262.	6.7	10
121	Dynamics of water confined in fuel cell Nafion membranes containing zirconium phosphate nanofiller. Journal of Physics Condensed Matter, 2006, 18, S2029-S2038.	1.8	10
122	ac Conductivity of cerium (IV) phosphate in hydrogen form. Solid State Ionics, 1988, 28-30, 617-621.	2.7	9
123	ac and dc conductivity of polyhydrated monolithium and monosodium salt forms of α-zirconium phosphate. Solid State Ionics, 1989, 35, 59-65.	2.7	9
124	Proton-metal ion conduction in monoalkali salt forms of α-zirconium phospate. Solid State Ionics, 1991, 47, 155-159.	2.7	8
125	Preparation, proton transport properties and use in gas sensors of thin films of zirconium phosphate with γ-layered structure. Ionics, 1996, 2, 179-183.	2.4	8
126	Aminoalcohol functionalized zirconium phosphate as versatile filler for starch-based composite membranes. Carbohydrate Polymers, 2013, 97, 210-216.	10.2	8

#	Article	IF	CITATIONS
127	Improving the mechanical stability of proton conducting SPEEK membranes by in situ precipitation of zirconium phosphate phenylphosphonates. RSC Advances, 2016, 6, 36606-36614.	3.6	8
128	Investigating the effect of positional isomerism on the assembly of zirconium phosphonates based on tritopic linkers. Dalton Transactions, 2020, 49, 3662-3666.	3.3	8
129	Formation and Intercalation of Hexamethylenetetramine in the Layered Structure of alpha-Zirconium Phosphate Acta Chemica Scandinavica, 1990, 44, 459-463.	0.7	8
130	Proton conducting membranes for medium temperature fuel cells: recent advances and new strategies. Desalination, 2006, 199, 4-5.	8.2	7
131	Preparation and Characterization of a Composite of Silver Iodide and Synthetic Mordenite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1998, 31, 131-143.	1.6	6
132	Factors affecting the stability of Nafion conductivity at high temperature and relative humidity. Desalination, 2006, 200, 639-641.	8.2	6
133	Preparation and analysis of new proton conducting membranes for fuel cells. Solid State Ionics, 2007, 178, 493-500.	2.7	6
134	Basic Aspects in Proton-Conducting Membranes for Fuel Cells. , 2010, , 431-465.		5
135	Response to pH of an electrode made up of a monocrystal of α-Zr(HPO4)2·H2O. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 216, 283-288.	0.1	3
136	A study of the silver form of a natural zeolitic material of the clinoptilolite type. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1995, 20, 233-240.	1.6	3
137	Organoinorganic sulfonated polymers?Review. Journal of Inorganic and Organometallic Polymers, 1996, 6, 301-312.	1.5	3
138	Electrical conductivity of MOXO4 (M=V, Nb; X=P, As) compounds intercalated with H2O and H3XO4. Journal of Solid State Chemistry, 2005, 178, 1778-1785.	2.9	3
139	Composite sodium alginate-ion exchangers as cleaning systems for the removal of gypsum efflorescences. Applied Clay Science, 2019, 181, 105216.	5.2	3
140	A new challenge for nanocrystalline α-zirconium phosphate: reaction with a diepoxyalkane. Dalton Transactions, 2020, 49, 3869-3876.	3.3	3
141	Surface ion exchange and adsorption of same dyes on α-Zr(HPO4)2·H2O micro-crystals. Journal of Chromatography A, 1980, 195, 270-276.	3.7	2
142	Polydopamine Coated CeO2 as Radical Scavenger Filler for Aquivion Membranes with High Proton Conductivity. Materials, 2021, 14, 5280.	2.9	2
143	AC and DC electrochemical investigation of α-zirconium phosphate intercalated with hexamethylenetetramine. Journal of Materials Chemistry, 1995, 5, 991-994.	6.7	1
144	Low-frequency dynamics of water absorbed in Nafion membranes as a function of temperature. Philosophical Magazine, 2007, 87, 477-483.	1.6	1

#	Article	IF	CITATIONS
145	3.7 Basic Aspects in Proton-Conducting Membranes for Fuel Cells. , 2017, , 171-205.		1
146	Examination of the orientation dependence of the quasielastic scattering of neutrons by pellicular zirconium phosphate film. Journal of Materials Chemistry, 1994, 4, 1313.	6.7	0
147	Nanosized composites of synthetic zeolites and silver iodide as potentially electrochemically active materials. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 66, 319-325.	1.6	0