List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/68071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of TRPM2 in brain tumours and potential as a drug target. Acta Pharmacologica Sinica, 2022, 43, 759-770.	6.1	10
2	Pyk2 inhibition attenuates hypoxic-ischemic brain injury in neonatal mice. Acta Pharmacologica Sinica, 2022, 43, 797-810.	6.1	5
3	Neuronal chemokine-like-factor 1 (CKLF1) up-regulation promotes M1 polarization of microglia in rat brain after stroke. Acta Pharmacologica Sinica, 2022, 43, 1217-1230.	6.1	19
4	Xyloketal B: A marine compound with medicinal potential. , 2022, 230, 107963.		7
5	Modulators of TRPM7 and its potential as a drug target for brain tumours. Cell Calcium, 2022, 101, 102521.	2.4	6
6	Inhibition of TRPM2 by AG490 Is Neuroprotective in a Parkinson's Disease Animal Model. Molecular Neurobiology, 2022, 59, 1543-1559.	4.0	7
7	AD-16 Protects Against Hypoxic-Ischemic Brain Injury by Inhibiting Neuroinflammation. Neuroscience Bulletin, 2022, , 1.	2.9	3
8	Ryanodine receptor inhibitor dantrolene reduces hypoxic-ischemic brain injury in neonatal mice. Experimental Neurology, 2022, 351, 113985.	4.1	6
9	Inhibition of TRPM7 with carvacrol suppresses glioblastoma functions in vivo. European Journal of Neuroscience, 2022, 55, 1483-1491.	2.6	11
10	CFTR Suppresses Neointimal Formation Through Attenuating Proliferation and Migration of Aortic Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2022, 79, 914-924.	1.9	2
11	Ion channel profiling of the Lymnaea stagnalis ganglia via transcriptome analysis. BMC Genomics, 2021, 22, 18.	2.8	8
12	Role of TRPM7 kinase in cancer. Cell Calcium, 2021, 96, 102400.	2.4	21
13	NLRP3 Inflammasome: A Potential Target in Isoflurane Pretreatment Alleviates Stroke-Induced Retinal Injury in Diabetes. Frontiers in Cellular Neuroscience, 2021, 15, 697449.	3.7	5
14	TRPM7 Mediates Neuronal Cell Death Upstream of Calcium/Calmodulin-Dependent Protein Kinase II and Calcineurin Mechanism in Neonatal Hypoxic-Ischemic Brain Injury. Translational Stroke Research, 2021, 12, 164-184.	4.2	31
15	Smartphones and Video Cameras: Future Methods for Blood Pressure Measurement. Frontiers in Digital Health, 2021, 3, 770096.	2.8	11
16	TRPM2â€AS inhibits the growth, migration, and invasion of gliomas through JNK, câ€Jun, and RCS4. Journal of Cellular Physiology, 2020, 235, 4594-4604.	4.1	19
17	Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead. Acta Pharmacologica Sinica, 2020, 41, 1519-1524.	6.1	12
18	Inhibition of TRPM7 with waixenicin A reduces glioblastoma cellular functions. Cell Calcium, 2020, 92, 102307.	2.4	12

#	Article	IF	CITATIONS
19	Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Experimental Neurology, 2020, 334, 113457.	4.1	30
20	Drug development in targeting ion channels for brain edema. Acta Pharmacologica Sinica, 2020, 41, 1272-1288.	6.1	16
21	Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. , 2020, 214, 107593.		37
22	Identification of key genes in ruptured atherosclerotic plaques by weighted gene correlation network analysis. Scientific Reports, 2020, 10, 10847.	3.3	23
23	Microvascular Alterations in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2020, 14, 618986.	3.7	41
24	Effects of SLCO1B1 and GATM gene variants on rosuvastatin-induced myopathy are unrelated to high plasma exposure of rosuvastatin and its metabolites. Acta Pharmacologica Sinica, 2019, 40, 492-499.	6.1	19
25	Transcription Factor 2I Regulates Neuronal Development via TRPC3 in 7q11.23 Disorder Models. Molecular Neurobiology, 2019, 56, 3313-3325.	4.0	13
26	Clcn3 deficiency ameliorates high-fat diet-induced obesity and adipose tissue macrophage inflammation in mice. Acta Pharmacologica Sinica, 2019, 40, 1532-1543.	6.1	11
27	Role of Clâ^ channels in primary brain tumour. Cell Calcium, 2019, 81, 1-11.	2.4	17
28	Neuroprotective Effects of AG490 in Neonatal Hypoxic-Ischemic Brain Injury. Molecular Neurobiology, 2019, 56, 8109-8123.	4.0	16
29	Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway. Acta Pharmacologica Sinica, 2019, 40, 13-25.	6.1	110
30	The role of KATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacologica Sinica, 2018, 39, 683-694.	6.1	55
31	Pharmacological approaches promoting stem cell-based therapy following ischemic stroke insults. Acta Pharmacologica Sinica, 2018, 39, 695-712.	6.1	23
32	Blockade of the swelling-induced chloride current attenuates the mouse neonatal hypoxic-ischemic brain injury in vivo. Acta Pharmacologica Sinica, 2018, 39, 858-865.	6.1	15
33	Dopamine-mediated calcium channel regulation in synaptic suppression in L. stagnalis interneurons. Channels, 2018, 12, 153-173.	2.8	6
34	Meta-Analysis on the Association between Brain-Derived Neurotrophic Factor Polymorphism rs6265 and Ischemic Stroke, Poststroke Depression. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 1599-1608.	1.6	20
35	Long non-coding RNAs in ischemic stroke. Cell Death and Disease, 2018, 9, 281.	6.3	230
36	Dietary Curcumin Intervention Targets Mouse White Adipose Tissue Inflammation and Brown Adipose Tissue UCP1 Expression. Obesity, 2018, 26, 547-558.	3.0	62

#	Article	IF	CITATIONS
37	Xyloketal B exerts antihypertensive effect in renovascular hypertensive rats via the NO-sGC-cGMP pathway and calcium signaling. Acta Pharmacologica Sinica, 2018, 39, 875-884.	6.1	10
38	The role of TRPM2 channels in neurons, glial cells and the blood-brain barrier in cerebral ischemia and hypoxia. Acta Pharmacologica Sinica, 2018, 39, 713-721.	6.1	48
39	Combined measurement of plasma cystatin C and low-density lipoprotein cholesterol: A valuable tool for evaluating progressive supranuclear palsy. Parkinsonism and Related Disorders, 2018, 52, 37-42.	2.2	23
40	Swellingâ€induced chloride current in glioblastoma proliferation, migration, and invasion. Journal of Cellular Physiology, 2018, 233, 363-370.	4.1	30
41	Marine Compound Xyloketal B as a Potential Drug Development Target for Neuroprotection. Marine Drugs, 2018, 16, 516.	4.6	14
42	C2 Domains of Munc13-4 Are Crucial for Ca2+-Dependent Degranulation and Cytotoxicity in NK Cells. Journal of Immunology, 2018, 201, 700-713.	0.8	18
43	Suppression of Kv1.5 protects against endothelial apoptosis induced by palmitate and in type 2 diabetes mice. Life Sciences, 2017, 168, 28-37.	4.3	13
44	<scp>GSK</scp> â€3β inhibitor <scp>TDZD</scp> â€8 reduces neonatal hypoxicâ€ischemic brain injury in mice. CNS Neuroscience and Therapeutics, 2017, 23, 405-415.	3.9	33
45	Role of TRPM7 in cerebral ischaemia and hypoxia. Journal of Physiology, 2017, 595, 3077-3083.	2.9	26
46	Xyloketal B alleviates cerebral infarction and neurologic deficits in a mouse stroke model by suppressing the ROS/TLR4/NF-κB inflammatory signaling pathway. Acta Pharmacologica Sinica, 2017, 38, 1236-1247.	6.1	41
47	UNC-18 and Tomosyn Antagonistically Control Synaptic Vesicle Priming Downstream of UNC-13 in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2017, 37, 8797-8815.	3.6	39
48	Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Experimental Neurology, 2017, 296, 32-40.	4.1	46
49	ATP-Sensitive Potassium Channels (KATP) Play a Role in Hypoxic Preconditioning Against Neonatal Hypoxic-Ischemic Brain Injury. Springer Series in Translational Stroke Research, 2017, , 185-201.	0.1	2
50	Activation of TRPM7 by naltriben enhances migration and invasion of glioblastoma cells. Oncotarget, 2017, 8, 11239-11248.	1.8	36
51	TRPM7 Channels as Potential Therapeutic Targets for Stroke. Springer Series in Translational Stroke Research, 2017, , 415-432.	0.1	0
52	Tideglusib, a chemical inhibitor of CSK3β, attenuates hypoxic-ischemic brain injury in neonatal mice. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2076-2085.	2.4	40
53	Cerebrovascular Safety of Sulfonylureas: The Role of KATP Channels in Neuroprotection and the Risk of Stroke in Patients With Type 2 Diabetes. Diabetes, 2016, 65, 2795-2809.	0.6	56
54	TRPM7 Regulates Axonal Outgrowth and Maturation of Primary Hippocampal Neurons. Molecular Neurobiology, 2016, 53, 595-610.	4.0	52

#	Article	IF	CITATIONS
55	Neuroprotective Effects of a PSD-95 Inhibitor in Neonatal Hypoxic-Ischemic Brain Injury. Molecular Neurobiology, 2016, 53, 5962-5970.	4.0	35
56	Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion. Oncotarget, 2015, 6, 16321-16340.	1.8	107
57	Marine Compound Xyloketal B Reduces Neonatal Hypoxic-Ischemic Brain Injury. Marine Drugs, 2015, 13, 29-47.	4.6	44
58	Xyloketal B Attenuates Atherosclerotic Plaque Formation and Endothelial Dysfunction in Apolipoprotein E Deficient Mice. Marine Drugs, 2015, 13, 2306-2326.	4.6	18
59	Xyloketal B Suppresses Glioblastoma Cell Proliferation and Migration in Vitro through Inhibiting TRPM7-Regulated PI3K/Akt and MEK/ERK Signaling Pathways. Marine Drugs, 2015, 13, 2505-2525.	4.6	51
60	Forkhead box O transcription factors as possible mediators in the development of major depression. Neuropharmacology, 2015, 99, 527-537.	4.1	50
61	TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Molecular Brain, 2015, 8, 11.	2.6	106
62	Chaperoning of closed syntaxin-3 through Lys46 and Glu59 in domain 1 of Munc18 proteins is indispensable for mast cell exocytosis. Journal of Cell Science, 2015, 128, 1946-1960.	2.0	8
63	Neuronal KATP channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic–ischemic brain injury. Experimental Neurology, 2015, 263, 161-171.	4.1	59
64	Differential Roles of the Mevalonate Pathway in the Development and Survival of Mouse Purkinje Cells in Culture. Molecular Neurobiology, 2015, 51, 1116-1129.	4.0	4
65	Prognostic and clinicopathological significance of survivin expression in bladder cancer patients: a meta-analysis. Tumor Biology, 2014, 35, 1565-1574.	1.8	22
66	Neuroprotective effects of volume-regulated anion channel blocker DCPIB on neonatal hypoxic-ischemic injury. Acta Pharmacologica Sinica, 2013, 34, 113-118.	6.1	34
67	Neuroprotective role of ATP-sensitive potassium channels in cerebral ischemia. Acta Pharmacologica Sinica, 2013, 34, 24-32.	6.1	81
68	Caltubin, a Novel Molluscan Tubulin-Interacting Protein, Promotes Axonal Growth and Attenuates Axonal Degeneration of Rodent Neurons. Journal of Neuroscience, 2011, 31, 15231-15244.	3.6	14
69	TRPM7 in cerebral ischemia and potential target for drug development in stroke. Acta Pharmacologica Sinica, 2011, 32, 725-733.	6.1	43
70	Ca ²⁺ â€dependent induction of TRPM2 currents in hippocampal neurons. Journal of Physiology, 2009, 587, 965-979.	2.9	107
71	Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nature Neuroscience, 2009, 12, 1300-1307.	14.8	259
72	A method for identifying viable and damaged neurons in adult mouse brain slices. Acta Histochemica, 2009, 111, 531-537.	1.8	8

#	Article	IF	CITATIONS
73	Effectiveness of PSD95 Inhibitors in Permanent and Transient Focal Ischemia in the Rat. Stroke, 2008, 39, 2544-2553.	2.0	175
74	TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proceedings of the United States of America, 2007, 104, 16323-16328.	7.1	105
75	Intravenously Administered Bone Marrow Cells Migrate to Damaged Brain Tissue and Improve Neural Function in Ischemic Rats. Cell Transplantation, 2007, 16, 993-1005.	2.5	125
76	Zn2+ Sensitivity of High- and Low-Voltage Activated Calcium Channels. Biophysical Journal, 2007, 93, 1175-1183.	0.5	48
77	The role of synaptotagmin I C2A calcium-binding domain in synaptic vesicle clustering during synapse formation. Journal of Physiology, 2007, 581, 75-90.	2.9	23
78	Enhanced Neuronal Damage After Ischemic Insults in Mice Lacking Kir6.2-Containing ATP-Sensitive K+ Channels. Journal of Neurophysiology, 2006, 95, 2590-2601.	1.8	86