Arden L Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6806176/publications.pdf Version: 2024-02-01

Adden I. Moore

#	Article	IF	CITATIONS
1	Phonon thermal transport in silicon thin films with nanoscale constrictions and expansions. Journal of Applied Physics, 2022, 131, 025106.	2.5	1
2	Counter-flow for stabilization of microfluidic thermal reactors: Experimental and numerical study. Applied Thermal Engineering, 2021, 188, 116607.	6.0	1
3	In situ infrared temperature sensing for real-time defect detection in additive manufacturing. Additive Manufacturing, 2021, 47, 102328.	3.0	5
4	Effect of pH variation and annealing on covalently assembled nanodiamond films. Applied Surface Science, 2021, 565, 150585.	6.1	1
5	Microscale tracking of unconstrained moving multiphase contact lines via a capacitance sensor array. Sensors and Actuators A: Physical, 2021, 331, 113046.	4.1	2
6	Spatially periodic vapor bubble activity during subcooled pool boiling on 1D aluminum alloy micro-fin arrays. International Journal of Heat and Mass Transfer, 2021, 180, 121760.	4.8	7
7	Directed covalent assembly of nanodiamonds into thin films. Diamond and Related Materials, 2020, 101, 107605.	3.9	9
8	Experimental determination of the role of increased surface area in pool boiling from nanostructured surfaces. Experimental Thermal and Fluid Science, 2020, 111, 109956.	2.7	16
9	Tailoring the thermal transport properties of monolayer hexagonal boron nitride by grain size engineering. 2D Materials, 2020, 7, 015031.	4.4	21
10	Printer orientation effects and performance of novel 3-D printable acrylonitrile butadiene styrene (ABS) composite filaments for thermal enhancement. Polymer Testing, 2019, 80, 106125.	4.8	17
11	A low-altitude unmanned aerial vehicle (UAV) created using 3D-printed bioplastic. Journal of Unmanned Vehicle Systems, 2019, 7, 118-128.	1.2	Ο
12	Superior, processing-dependent thermal conductivity of cellulose Nanocrystal-Poly(vinyl alcohol) composite films. Polymer, 2019, 164, 17-25.	3.8	19
13	Operational enhancements for small scale thermal energy storage devices. Microsystem Technologies, 2018, 24, 2617-2625.	2.0	3
14	3-D printer settings effects on the thermal conductivity of acrylonitrile butadiene styrene (ABS). Polymer Testing, 2018, 70, 389-395.	4.8	29
15	A batch fabrication-compatible multifunctional thermal sensor based on thin film thermocouple and thermopile elements. Sensors and Actuators A: Physical, 2018, 280, 188-196.	4.1	5
16	Enhanced Ionic Sensitivity in Solution-Gated Graphene-Hexagonal Boron Nitride Heterostructure Field-Effect Transistors. Advanced Materials Technologies, 2018, 3, 1800133.	5.8	14
17	Temperature-dependent electrical resistance of conductive polylactic acid filament for fused deposition modeling. International Journal of Advanced Manufacturing Technology, 2018, 99, 1215-1224.	3.0	33
18	Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing. Journal of Micromechanics and Microengineering, 2017, 27, 025012.	2.6	10

Arden L Moore

#	Article	IF	CITATIONS
19	Flexible electronics-compatible non-enzymatic glucose sensing via transparent CuO nanowire networks on PET films. Nanotechnology, 2017, 28, 245502.	2.6	28
20	Spectral element simulations of three dimensional convective heat transfer. International Journal of Heat and Mass Transfer, 2017, 111, 1023-1038.	4.8	5
21	Enhanced thermal conduction and influence of interfacial resistance within flexible high aspect ratio copper nanowire/polymer composites. Composites Science and Technology, 2017, 144, 70-78.	7.8	58
22	APCVD hexagonal boron nitride thin films for passive near-junction thermal management of electronics. Nanotechnology, 2017, 28, 505705.	2.6	5
23	Foam-like hierarchical hexagonal boron nitride as a non-traditional thermal conductivity enhancer for polymer-based composite materials. International Journal of Heat and Mass Transfer, 2017, 115, 273-281.	4.8	31
24	Three Dimensional Simulations of Convective Heat Transfer With Spectral Element Method. , 2017, , .		0
25	Zinc Composites With Enhanced Thermal Conductivity for Use in Fused Deposition Modeling Systems. , 2017, , .		0
26	Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal. Physical Review B, 2017, 96, .	3.2	10
27	Design and Performance of Novel Low-Profile Heat Sinks Created Through Additive Manufacturing. , 2016, , .		1
28	Three Dimensional Simulations of Fluid Flow and Heat Transfer with Spectral Element Method. , 2016, ,		1
29	Saturated pool boiling heat transfer from vertically oriented silicon surfaces modified with foam-like hexagonal boron nitride nanomaterials. International Journal of Heat and Mass Transfer, 2016, 95, 964-971.	4.8	24
30	Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods. AIP Advances, 2015, 5, .	1.3	40
31	Three-dimensional foam-like hexagonal boron nitride nanomaterials via atmospheric pressure chemical vapor deposition. Journal of Materials Science, 2015, 50, 6220-6226.	3.7	29
32	Thermal Conductivity in Nanostructured Films: From Single Cellulose Nanocrystals to Bulk Films. Biomacromolecules, 2014, 15, 4096-4101.	5.4	119
33	Emerging challenges and materials for thermal management of electronics. Materials Today, 2014, 17, 163-174.	14.2	1,359
34	Phonon Transport and Thermoelectricity in Defect-Engineered InAs Nanowires. Materials Research Society Symposia Proceedings, 2012, 1404, 36.	0.1	6
35	Thermoelectric Properties of Cold-Pressed Higher Manganese Silicides for Waste Heat Recovery. Journal of Electronic Materials, 2012, 41, 1564-1572.	2.2	27
36	Thermal Conductivity Measurement of Graphene Exfoliated on Silicon Dioxide. Journal of Heat Transfer, 2011, 133, .	2.1	32

Arden L Moore

#	Article	IF	CITATIONS
37	Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments. ACS Nano, 2011, 5, 321-328.	14.6	474
38	Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. Physical Review B, 2011, 83, .	3.2	96
39	On errors in thermal conductivity measurements of suspended and supported nanowires using micro-thermometer devices from low to high temperatures. Measurement Science and Technology, 2011, 22, 015103.	2.6	48
40	Thermal Conductivity Measurement of Graphene Exfoliated on Silicon Dioxide. , 2010, , .		1
41	Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires. Journal Physics D: Applied Physics, 2010, 43, 025406.	2.8	50
42	Two-Dimensional Phonon Transport in Supported Graphene. Science, 2010, 328, 213-216.	12.6	1,692
43	Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Letters, 2010, 10, 1645-1651.	9.1	1,103
44	Thermal Conductivity Measurements of Nylon 11-Carbon Nanofiber Nanocomposites. Journal of Heat Transfer, 2009, 131, .	2.1	19
45	Thermal conductivity suppression in bismuth nanowires. Journal of Applied Physics, 2009, 106, .	2.5	77
46	Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires. Journal of Applied Physics, 2009, 105, .	2.5	151
47	Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Applied Physics Letters, 2008, 93, .	3.3	159
48	Measurement and analysis of thermopower and electrical conductivity of an indium antimonide nanowire from a vapor-liquid-solid method. Journal of Applied Physics, 2007, 101, 023706.	2.5	81
49	Determination of Transport Properties in Chromium Disilicide Nanowires via Combined Thermoelectric and Structural Characterizations. Nano Letters, 2007, 7, 1649-1654.	9.1	131
50	One-dimensional electron transport and thermopower in an individual InSb nanowire. Journal of Physics Condensed Matter, 2006, 18, 9651-9657.	1.8	25
51	Experiential Learning in the Thermal Sciences: Introducing and Reinforcing Fundamental Thermodynamics and Heat Transfer Principles to K-12 and Engineering Undergraduate Students. , 0, , .		1