Jean-Claude Dujardin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6806064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cutaneous leishmaniasis. Lancet Infectious Diseases, The, 2007, 7, 581-596.	9.1	1,130
2	Whole genome sequencing of multiple <i>Leishmania donovani</i> clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research, 2011, 21, 2143-2156.	5.5	381
3	Chromosome and gene copy number variation allow major structural change between species and strains of <i>Leishmania</i> . Genome Research, 2011, 21, 2129-2142.	5.5	380
4	Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9375-9380.	7.1	358
5	Influence ofLeishmania (Viannia)Species on the Response to Antimonial Treatment in Patients with American Tegumentary Leishmaniasis. Journal of Infectious Diseases, 2007, 195, 1846-1851.	4.0	212
6	Extreme inbreeding in <i>Leishmania braziliensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10224-10229.	7.1	158
7	Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. ELife, 2016, 5, .	6.0	147
8	Species Typing in Dermal Leishmaniasis. Clinical Microbiology Reviews, 2015, 28, 265-294.	13.6	121
9	Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends in Parasitology, 2012, 28, 370-376.	3.3	120
10	Association of the Endobiont Double-Stranded RNA Virus LRV1 With Treatment Failure for Human Leishmaniasis Caused by <i>Leishmania braziliensis</i> in Peru and Bolivia. Journal of Infectious Diseases, 2016, 213, 112-121.	4.0	114
11	Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends in Parasitology, 2017, 33, 162-174.	3.3	105
12	THE SENSITIVITY OF CLINICAL ISOLATES OF LEISHMANIA FROM PERU AND NEPAL TO MILTEFOSINE. American Journal of Tropical Medicine and Hygiene, 2005, 73, 272-275.	1.4	99
13	Putative Leishmania hybrids in the Eastern Andean valley of Huanuco, Peru. Acta Tropica, 1995, 59, 293-307.	2.0	96
14	Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nature Ecology and Evolution, 2017, 1, 1961-1969.	7.8	95
15	American Tegumentary Leishmaniasis: Is Antimonial Treatment Outcome Related to Parasite Drug Susceptibility?. Journal of Infectious Diseases, 2006, 194, 1168-1175.	4.0	92
16	Global genome diversity of the Leishmania donovani complex. ELife, 2020, 9, .	6.0	90
17	Leishmaniases in the Mediterranean in the era of molecular epidemiology. Trends in Parasitology, 2008, 24, 135-142.	3.3	86
18	Domestic Animals and Epidemiology of Visceral Leishmaniasis, Nepal. Emerging Infectious Diseases, 2010, 16, 231-237.	4.3	82

#	Article	IF	CITATIONS
19	<i>Leishmania</i> Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype Instability, and Telomeric Amplification. MBio, 2018, 9, .	4.1	82
20	Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes. PLoS ONE, 2016, 11, e0154101.	2.5	80
21	Ecological divergence and hybridization of Neotropical <i>Leishmania</i> parasites. Proceedings of the United States of America, 2020, 117, 25159-25168.	7.1	60
22	Discovery and genomic analyses of hybridization between divergent lineages of <i>Trypanosoma congolense</i> , causative agent of Animal African Trypanosomiasis. Molecular Ecology, 2017, 26, 6524-6538.	3.9	50
23	Natural Leishmania donovani/Leishmania aethiopica hybrids identified from Ethiopia. Infection, Genetics and Evolution, 2011, 11, 2113-2118.	2.3	49
24	Genomes of Leishmania parasites directly sequenced from patients with visceral leishmaniasis in the Indian subcontinent. PLoS Neglected Tropical Diseases, 2019, 13, e0007900.	3.0	48
25	In vitro Susceptibility of Leishmania donovani to Miltefosine in Indian Visceral Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2013, 89, 750-754.	1.4	46
26	The sensitivity of clinical isolates of Leishmania from Peru and Nepal to miltefosine. American Journal of Tropical Medicine and Hygiene, 2005, 73, 272-5.	1.4	40
27	Evolution of the Leishmania braziliensis species complex from amplified fragment length polymorphisms, and clinical implications. Infection, Genetics and Evolution, 2012, 12, 1994-2002.	2.3	38
28	ls Leishmania (Viannia) peruviana a Distinct Species? A MLEE/RAPD Evolutionary Genetics Answer. Journal of Eukaryotic Microbiology, 2000, 47, 197-207.	1.7	37
29	Macromolecular biosynthetic parameters and metabolic profile in different life stages of Leishmania braziliensis: Amastigotes as a functionally less active stage. PLoS ONE, 2017, 12, e0180532.	2.5	35
30	Integrated genomic and metabolomic profiling of ISC1, an emerging Leishmania donovani population in the Indian subcontinent. Infection, Genetics and Evolution, 2018, 62, 170-178.	2.3	32
31	Alice in microbes' land: adaptations and counter-adaptations of vector-borne parasitic protozoa and their hosts. FEMS Microbiology Reviews, 2016, 40, 664-685.	8.6	24
32	A novel marker, ARM58, confers antimony resistance to Leishmania spp International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 37-47.	3.4	23
33	Importance of secondary screening with clinical isolates for anti-leishmania drug discovery. Scientific Reports, 2018, 8, 11765.	3.3	21
34	Evaluation of whole genome amplification and bioinformatic methods for the characterization of Leishmania genomes at a single cell level. Scientific Reports, 2020, 10, 15043.	3.3	20
35	Single locus genotyping to track Leishmania donovani in the Indian subcontinent: Application in Nepal. PLoS Neglected Tropical Diseases, 2017, 11, e0005420.	3.0	19
36	Mosaic aneuploidy in Leishmania: the perspective of whole genome sequencing. Trends in Parasitology, 2014, 30, 554-555.	3.3	18

JEAN-CLAUDE DUJARDIN

#	Article	IF	CITATIONS
37	High throughput single-cell genome sequencing gives insights into the generation and evolution of mosaic aneuploidy in <i>Leishmania donovani</i> . Nucleic Acids Research, 2022, 50, 293-305.	14.5	14
38	Next-Generation Molecular Surveillance of TriTryp Diseases. Trends in Parasitology, 2020, 36, 356-367.	3.3	10
39	Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes, 2020, 11, 1159.	2.4	9
40	The Absence of C-5 DNA Methylation in Leishmania donovani Allows DNA Enrichment from Complex Samples. Microorganisms, 2020, 8, 1252.	3.6	9
41	Transcriptional Shift and Metabolic Adaptations during Leishmania Quiescence Using Stationary Phase and Drug Pressure as Models. Microorganisms, 2022, 10, 97.	3.6	7
42	ISC1, a new Leishmania donovani population emerging in the Indian sub-continent: Vector competence of Phlebotomus argentipes. Infection, Genetics and Evolution, 2019, 76, 104073.	2.3	6
43	Genomic and Phenotypic Characterization of Experimentally Selected Resistant Leishmania donovani Reveals a Role for Dynamin-1-Like Protein in the Mechanism of Resistance to a Novel Antileishmanial Compound. MBio, 2022, 13, e0326421.	4.1	5
44	Epidemiology of Leishmaniasis in the Time of Drug Resistance. , 2013, , 65-83.		4
45	Non- <i>Leishmania</i> Parasite in Fatal Visceral Leishmaniasis–like Disease, Brazil. Emerging Infectious Diseases, 2020, 26, 388-388.	4.3	4
46	Epidemiology of Leishmaniasis in the Time of Drug Resistance (the Miltefosine Era). , 2018, , 85-107.		3