Xiao-ding Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6804392/publications.pdf

Version: 2024-02-01

516710 794594 1,816 19 16 19 citations g-index h-index papers 19 19 19 3174 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes and Development, 2003, 17, 1352-1365.	5.9	693
2	The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/- mice. Genes and Development, 2006, 20, 1569-1574.	5.9	229
3	Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell, 2006, 10, 269-280.	16.8	207
4	A Phosphoinositide 3-Kinase-AKT-Nitric Oxide-cGMP Signaling Pathway in Stimulating Platelet Secretion and Aggregation*. Journal of Biological Chemistry, 2006, 281, 16333-16339.	3.4	106
5	Spontaneous Hepatocellular Carcinoma after the Combined Deletion of Akt Isoforms. Cancer Cell, 2016, 29, 523-535.	16.8	89
6	Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium. Nature Communications, 2016, 7, 10960.	12.8	77
7	Liver-Derived IGF-I Regulates GH Secretion at the Pituitary Level in Mice. Endocrinology, 2001, 142, 4762-4770.	2.8	74
8	Leptin Deficiency and Beta-Cell Dysfunction Underlie Type 2 Diabetes in Compound Akt Knockout Mice. Molecular and Cellular Biology, 2009, 29, 3151-3162.	2.3	54
9	Homologous and Heterologous Regulation of Pituitary Receptors for Ghrelin and Growth Hormone-Releasing Hormone. Endocrinology, 2004, 145, 3182-3189.	2.8	53
10	The Growth Hormone (GH)-Axis of GH Receptor/Binding Protein Gene-Disrupted and Metallothionein-Human GH-Releasing Hormone Transgenic Mice: Hypothalamic Neuropeptide and Pituitary Receptor Expression in the Absence and Presence of GH Feedback*. Endocrinology, 2001, 142, 1117-1123.	2.8	42
11	Akt1 promotes stimuli-induced endothelial-barrier protection through FoxO-mediated tight-junction protein turnover. Cellular and Molecular Life Sciences, 2016, 73, 3917-3933.	5.4	35
12	Expression Analysis of Hypothalamic and Pituitary Components of the Growth Hormone Axis in Fasted and Streptozotocin-Treated Neuropeptide Y (NPY)-Intact (NPY $<$ sup $>+$ /+ $<$ /sup $>$) and NPY-Knockout (NPY $<$ sup $>$ â \in "/â \in " $<$ sup $>$) Mice. Neuroendocrinology, 2005, 81, 360-371.	2.5	33
13	The effect Akt2 deletion on tumor development in Pten+/â^' mice. Oncogene, 2012, 31, 518-526.	5.9	31
14	The Growth Hormone (GH)-Axis of GH Receptor/Binding Protein Gene-Disrupted and Metallothionein-Human GH-Releasing Hormone Transgenic Mice: Hypothalamic Neuropeptide and Pituitary Receptor Expression in the Absence and Presence of GH Feedback. Endocrinology, 2001, 142, 1117-1123.	2.8	22
15	Homologous and heterologous in vitro regulation of pig pituitary somatostatin receptor subtypes, sst1, sst2 and sst5 mRNA. Journal of Molecular Endocrinology, 2004, 32, 437-448.	2.5	21
16	Akt-dependent Skp2 mRNA translation is required for exiting contact inhibition, oncogenesis, and adipogenesis. EMBO Journal, 2012, 31, 1134-1146.	7.8	21
17	Use of the Metallothionein Promoter-Human Growth Hormone-Releasing Hormone (GHRH) Mouse to Identify Regulatory Pathways that Suppress Pituitary Somatotrope Hyperplasia and Adenoma Formation due to GHRH-Receptor Hyperactivation. Endocrinology, 2009, 150, 3177-3185.	2.8	16
18	Adiponectin is expressed in the pancreas of high-fat-diet-fed mice and protects pancreatic endothelial function during the development of type 2 diabetes. Diabetes and Metabolism, 2014, 40, 363-372.	2.9	10

#	Article	IF	CITATIONS
19	A Novel Dual Eigen-Analysis of Mouse Multi-Tissues' Expression Profiles Unveils New Perspectives into Type 2 Diabetes. Scientific Reports, 2017, 7, 5044.	3.3	3