Hong-Jin Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6803816/publications.pdf

Version: 2024-02-01

159585 149698 4,205 59 30 56 h-index citations g-index papers 68 68 68 4617 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Efficient Photogeneration of Hydrogen Boosted by Long-Lived Dye-Modified Ir(III) Photosensitizers and Polyoxometalate Catalyst. CCS Chemistry, 2022, 4, 259-271.	7.8	29
2	CdTe/CdSe-sensitized photocathode coupling with Ni-substituted polyoxometalate catalyst for photoelectrochemical generation of hydrogen. Nano Research, 2022, 15, 1347-1354.	10.4	18
3	Coupling Ni-substituted polyoxometalate catalysts with water-soluble CdSe quantum dots for ultraefficient photogeneration of hydrogen under visible light. Applied Catalysis B: Environmental, 2022, 303, 120893.	20.2	33
4	Wheel-shaped icosanuclear Cu-containing polyoxometalate catalyst: Mechanistic and stability studies on light-driven hydrogen generation. Chinese Journal of Catalysis, 2022, 43, 442-450.	14.0	16
5	Metal–Organic Cages with {SiW ₉ Ni ₄ } Polyoxotungstate Nodes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
6	A dual-functional supramolecular assembly for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2022, 312, 121386.	20.2	29
7	Chiral {Ni ₆ PW ₉ } Cluster–Organic Framework: Synthesis, Structure, and Properties. Inorganic Chemistry, 2022, 61, 7477-7483.	4.0	9
8	All-Inorganic Bis-Sb ₃ O ₃ -Functionalized A-Type Anderson–Evans Polyoxometalate for Visible-Light-Driven Hydrogen Production. Inorganic Chemistry, 2022, 61, 8467-8476.	4.0	6
9	Recent advances of mixed-transition-metal-substituted polyoxometalates. Science China Chemistry, 2022, 65, 1515-1525.	8.2	28
10	Syntheses and applications of perovskite-based photocatalysts in light-driven organic reactions. Current Opinion in Green and Sustainable Chemistry, 2021, 27, 100390.	5.9	21
11	Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chinese Journal of Catalysis, 2021, 42, 855-871.	14.0	65
12	Mechanistic Studies on the Photooxidation of 5â€Hydroxymethylfurfural by Polyoxometalate Catalysts and Atmospheric Oxygen. ChemCatChem, 2021, 13, 1389-1395.	3.7	4
13	A polyoxometalate@covalent triazine framework as a robust electrocatalyst for selective benzyl alcohol oxidation coupled with hydrogen production. Journal of Materials Chemistry A, 2021, 9, 6152-6159.	10.3	48
14	Polyoxometalate-modified reduced graphene oxide foam as a monolith reactor for efficient flow catalysis of epoxide ring-opening reactions. Journal of Materials Chemistry A, 2021, 9, 8480-8488.	10.3	15
15	Three-in-one: achieving a robust and effective hydrogen-evolving hybrid material by integrating polyoxometalate, a photo-responsive metal–organic framework, and ⟨i⟩in situ⟨ i⟩ generated Pt nanoparticles. Journal of Materials Chemistry A, 2021, 9, 19725-19733.	10.3	32
16	Pentadecanuclear Fe-Containing Polyoxometalate Catalyst for Visible-Light-Driven Generation of Hydrogen. Inorganic Chemistry, 2021, 60, 4124-4132.	4.0	31
17	Facile integration of Ni-substituted polyoxometalate catalysts into mesoporous light-responsive metal-organic framework for effective photogeneration of hydrogen. Applied Catalysis B: Environmental, 2021, 291, 120091.	20.2	66
18	Ring-Shaped Polyoxometalate Built by {Mn ₄ PW ₉ } and PO ₄ Units for Efficient Visible-Light-Driven Hydrogen Evolution. CCS Chemistry, 2021, 3, 2095-2103.	7.8	38

#	Article	IF	CITATIONS
19	Selective Valorization of 5-Hydroxymethylfurfural to 2,5-Diformylfuran Using Atmospheric O ₂ and MAPbBr ₃ Perovskite under Visible Light. ACS Catalysis, 2020, 10, 14793-14800.	11.2	83
20	Syntheses and catalytic properties of two new multi-manganese-substituted silicotungstates. Journal of Coordination Chemistry, 2020, 73, 2410-2421.	2.2	4
21	Enhanced Photocatalytic H ₂ â€Production Activity of CdS Quantum Dots Using Sn ²⁺ as Cocatalyst under Visible Light Irradiation. Small, 2020, 16, e2001024.	10.0	124
22	Synthesis of two new copper-sandwiched polyoxotungstates and the influence of nuclear number on catalytic hydrogen evolution activity. New Journal of Chemistry, 2020, 44, 11035-11041.	2.8	6
23	Two new Cu-based borate catalysts with cubic supramolecular cages for efficient catalytic hydrogen evolution. Dalton Transactions, 2020, 49, 10156-10161.	3.3	16
24	Advances of transition-metal-modified {P ₂ }-based polyoxometalates. Scientia Sinica Chimica, 2020, 50, 1015-1030.	0.4	0
25	Rhodamine-Platinum Diimine Dithiolate Complex Dyads as Efficient and Robust Photosensitizers for Light-Driven Aqueous Proton Reduction to Hydrogen. Journal of the American Chemical Society, 2018, 140, 2575-2586.	13.7	52
26	A Versatile Selfâ€Detoxifying Material Based on Immobilized Polyoxoniobate for Decontamination of Chemical Warfare Agent Simulants. Chemistry - A European Journal, 2018, 24, 19208-19215.	3.3	35
27	Semiconductor quantum dot-sensitized rainbow photocathode for effective photoelectrochemical hydrogen generation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11297-11302.	7.1	53
28	Broadâ€Spectrum Liquid―and Gasâ€Phase Decontamination of Chemical Warfare Agents by Oneâ€Dimensional Heteropolyniobates. Angewandte Chemie, 2016, 128, 7529-7533.	2.0	75
29	Catalytic Light-Driven Generation of Hydrogen from Water by Iron Dithiolene Complexes. Journal of the American Chemical Society, 2016, 138, 11654-11663.	13.7	96
30	Broadâ€Spectrum Liquid―and Gasâ€Phase Decontamination of Chemical Warfare Agents by Oneâ€Dimensional Heteropolyniobates. Angewandte Chemie - International Edition, 2016, 55, 7403-7407.	13.8	101
31	Cu-based Polyoxometalate Catalyst for Efficient Catalytic Hydrogen Evolution. Inorganic Chemistry, 2016, 55, 6750-6758.	4.0	50
32	Self-assembly of polyoxometalates, Pt nanoparticles and metal–organic frameworks into a hybrid material for synergistic hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 5952-5957.	10.3	89
33	Syntheses, Structural Characterization, and Catalytic Properties of Di- and Trinickel Polyoxometalates. Inorganic Chemistry, 2016, 55, 461-466.	4.0	27
34	[{Ni ₄ (OH) ₃ AsO ₄ } ₄ (<i>B</i> ê+â€PW ₉ O _{A New Polyoxometalate Structural Family with Catalytic Hydrogen Evolution Activity. Chemistry - A European Journal, 2015, 21, 17363-17370.}	·34) 3.3) ₄₅₂
35	Three Candesartan Salts with Enhanced Oral Bioavailability. Crystal Growth and Design, 2015, 15, 3707-3714.	3.0	44
36	Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Communications, 2015, 6, 6475.	12.8	66

#	Article	IF	CITATIONS
37	A Layered Manganese(IV)-Containing Heteropolyvanadate with a 1:14 Stoichiometry. Inorganic Chemistry, 2015, 54, 10604-10609.	4.0	12
38	Polyoxometalate Multiâ€Electronâ€Transfer Catalytic Systems for Water Splitting. European Journal of Inorganic Chemistry, 2014, 2014, 635-644.	2.0	85
39	Collecting meaningful early-time kinetic data in homogeneous catalytic water oxidation with a sacrificial oxidant. Physical Chemistry Chemical Physics, 2014, 16, 11942-11949.	2.8	16
40	Aerobic Oxidation of Formaldehyde Catalyzed by Polyvanadotungstates. ACS Catalysis, 2014, 4, 1154-1161.	11.2	37
41	A Noble-Metal-Free, Tetra-nickel Polyoxotungstate Catalyst for Efficient Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2014, 136, 14015-14018.	13.7	213
42	Hole Removal Rate Limits Photodriven H ₂ Generation Efficiency in CdS-Pt and CdSe/CdS-Pt Semiconductor Nanorod–Metal Tip Heterostructures. Journal of the American Chemical Society, 2014, 136, 7708-7716.	13.7	354
43	An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst. Journal of the American Chemical Society, 2014, 136, 9268-9271.	13.7	260
44	Visible-light-driven hydrogen evolution from water using a noble-metal-free polyoxometalate catalyst. Journal of Catalysis, 2013, 307, 48-54.	6.2	95
45	Differentiating Homogeneous and Heterogeneous Water Oxidation Catalysis: Confirmation that [Co ₄ (H ₂ O) ₂ (α-PW ₉ O ₃₄) ₂] _{1 a Molecular Water Oxidation Catalyst. Journal of the American Chemical Society, 2013, 135, 14110-14118.}	10–13.7	P36
46	A Hexanuclear Cobalt(II) Cluster Incorporated in a Bananaâ€6haped Tungstovanadate: [(Co(OH ₂)Co ₂ VW ₉ O ₃₄) ₂ (VW ₆ O<€European Journal of Inorganic Chemistry, 2013, 2013, 1720-1725.	: sud o>26 </td <td>/sado>)]<sup< td=""></sup<></td>	/ sado >)] <sup< td=""></sup<>
47	Bis $(4\hat{a}\in^2-(4-\text{pyridyl})-2,2\hat{a}\in^2:6\hat{a}\in^2,2\hat{a}\in^2\hat{a}\in^2-\text{terpyridine})$ ruthenium(ii) complexes and their N-alkylated derivatives in catalytic light-driven water oxidation. RSC Advances, 2013, 3, 20647.	3.6	18
48	Multi-Electron-Transfer Catalysts Needed for Artificial Photosynthesis. Materials Research Society Symposia Proceedings, 2012, 1387, 1.	0.1	7
49	Preparation of NiFe2O4 nanoparticles and its visible-light-driven photoactivity for hydrogen production. Catalysis Communications, 2012, 28, 116-119.	3.3	65
50	Near Unity Quantum Yield of Light-Driven Redox Mediator Reduction and Efficient H ₂ Generation Using Colloidal Nanorod Heterostructures. Journal of the American Chemical Society, 2012, 134, 11701-11708.	13.7	237
51	Polyoxometalate water oxidation catalysts and the production of green fuel. Chemical Society Reviews, 2012, 41, 7572.	38.1	678
52	A nickel containing polyoxometalate water oxidation catalyst. Dalton Transactions, 2012, 41, 13043.	3.3	111
53	Structural and mechanistic studies of tunable, stable, fast multi-cobalt water oxidation catalysts. Proceedings of SPIE, 2011, , .	0.8	1
54	Preparation of ZnO Nanoparticles and Photocatalytic H2 Production Activity from Different Sacrificial Reagent Solutions. Chinese Journal of Chemical Physics, 2011, 24, 464-470.	1.3	25

Hong-Jin Lv

#	Article	IF	CITATIONS
55	Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. Journal of Materials Chemistry, 2010, 20, 3665.	6.7	252
56	Synthesis and textural evolution of alumina particles with mesoporous structures. Journal of Solid State Chemistry, 2010, 183, 1448-1456.	2.9	20
57	Fabrication of alumina nanofibers by precipitation reaction combined with heterogeneous azeotropic distillation process. Materials Research Bulletin, 2009, 44, 160-167.	5.2	15
58	Preface to the special issue on Polyoxometalates. Tungsten, 0, , .	4.8	0
59	Metal–Organic Cages with {SiW ₉ Ni ₄ } Polyoxotungstate Nodes. Angewandte Chemie, 0, , .	2.0	4