Jan Novak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6803273/publications.pdf

Version: 2024-02-01

23533 19657 13,355 150 61 111 citations h-index g-index papers 154 154 154 9434 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Glycosylation in health and disease. Nature Reviews Nephrology, 2019, 15, 346-366.	9.6	1,166
2	The Pathophysiology of IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2011, 22, 1795-1803.	6.1	584
3	Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nature Genetics, 2011, 43, 321-327.	21.4	528
4	Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nature Genetics, 2014, 46, 1187-1196.	21.4	505
5	Naturally Occurring Human Urinary Peptides for Use in Diagnosis of Chronic Kidney Disease. Molecular and Cellular Proteomics, 2010, 9, 2424-2437.	3.8	434
6	Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. Journal of Clinical Investigation, 1999, 104, 73-81.	8.2	406
7	Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. Journal of Clinical Investigation, 2009, 119, 1668-77.	8.2	356
8	IgA nephropathy. Nature Reviews Disease Primers, 2016, 2, 16001.	30.5	322
9	Geographic Differences in Genetic Susceptibility to IgA Nephropathy: GWAS Replication Study and Geospatial Risk Analysis. PLoS Genetics, 2012, 8, e1002765.	3.5	301
10	Recommendations for Biomarker Identification and Qualification in Clinical Proteomics. Science Translational Medicine, 2010, 2, 46ps42.	12.4	273
11	Advances in Urinary Proteome Analysis and Biomarker Discovery. Journal of the American Society of Nephrology: JASN, 2007, 18, 1057-1071.	6.1	264
12	Current Understanding of the Role of Complement in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 1503-1512.	6.1	236
13	Aberrant IgA1 Glycosylation Is Inherited in Familial and Sporadic IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 1008-1014.	6.1	227
14	IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. Journal of Clinical Investigation, 2008, 118, 629-39.	8.2	217
15	Autoantibodies Targeting Galactose-Deficient IgA1 Associate with Progression of IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2012, 23, 1579-1587.	6.1	209
16	Mice overexpressing BAFF develop a commensal flora–dependent, IgA-associated nephropathy. Journal of Clinical Investigation, 2011, 121, 3991-4002.	8.2	208
17	Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch–Schönlein purpura nephritis. Kidney International, 2011, 80, 79-87.	5 . 2	205
18	The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney International, 2012, 82, 790-796.	5 . 2	185

#	Article	IF	CITATIONS
19	IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney International, 2005, 67, 504-513.	5.2	184
20	The genetics and immunobiology of IgA nephropathy. Journal of Clinical Investigation, 2014, 124, 2325-2332.	8.2	182
21	A Randomized, Controlled Trial of Rituximab in IgA Nephropathy with Proteinuria and Renal Dysfunction. Journal of the American Society of Nephrology: JASN, 2017, 28, 1306-1313.	6.1	174
22	IgA Glycosylation and IgA Immune Complexes in the Pathogenesis of IgA Nephropathy. Seminars in Nephrology, 2008, 28, 78-87.	1.6	173
23	Glycosylation and Size of IgA1 Are Essential for Interaction with Mesangial Transferrin Receptor in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2004, 15, 622-634.	6.1	160
24	Toll-Like Receptor 9 Affects Severity of IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 2384-2395.	6.1	160
25	Implementation of proteomic biomarkers: making it work. European Journal of Clinical Investigation, 2012, 42, 1027-1036.	3.4	151
26	Comparison of Methods for Profiling O-Glycosylation. Molecular and Cellular Proteomics, 2010, 9, 719-727.	3.8	136
27	Glycosylation Patterns of HIV-1 gp120 Depend on the Type of Expressing Cells and Affect Antibody Recognition. Journal of Biological Chemistry, 2010, 285, 20860-20869.	3.4	131
28	Determination of Aberrant O-Glycosylation in the IgA1 Hinge Region by Electron Capture Dissociation Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Journal of Biological Chemistry, 2005, 280, 19136-19145.	3.4	125
29	Pathogenesis of Henoch-Schönlein purpura nephritis. Pediatric Nephrology, 2010, 25, 19-26.	1.7	125
30	Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 1195-1204.	6.1	124
31	Cytokines Alter IgA1 O-Glycosylation by Dysregulating C1GalT1 and ST6GalNAc-II Enzymes. Journal of Biological Chemistry, 2014, 289, 5330-5339.	3.4	123
32	The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy. Frontiers in Immunology, 2016, 7, 117.	4.8	123
33	Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-SchA¶nlein purpura. Pediatric Nephrology, 2007, 22, 2067-2072.	1.7	122
34	Interactions of human mesangial cells with IgA and IgA-containing immune complexes 1. Kidney International, 2002, 62, 465-475.	5.2	117
35	IgA Nephropathy: Molecular Mechanisms of the Disease. Annual Review of Pathology: Mechanisms of Disease, 2013, 8, 217-240.	22.4	116
36	Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Seminars in Immunopathology, 2012, 34, 365-382.	6.1	110

#	Article	IF	CITATIONS
37	Pathogenesis of Immunoglobulin A Nephropathy: Recent Insight from Genetic Studies. Annual Review of Medicine, 2013, 64, 339-356.	12.2	108
38	Oxidative Stress and Galactose-Deficient IgA1 as Markers of Progression in IgA Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 1903-1911.	4.5	102
39	Increased levels of galactose-deficient IgG in sera of HIV-1-infected individuals. Aids, 2005, 19, 381-389.	2.2	100
40	The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Frontiers in Immunology, 2019, 10, 504.	4.8	100
41	Progress in molecular and genetic studies of IgA nephropathy. Journal of Clinical Immunology, 2001, 21, 310-327.	3.8	98
42	lgA Nephropathy and Henoch-Schoenlein Purpura Nephritis: Aberrant Glycosylation of IgA1, Formation of IgA1-Containing Immune Complexes, and Activation of Mesangial Cells. Contributions To Nephrology, 2007, 157, 134-138.	1.1	97
43	A Panel of Serum Biomarkers Differentiates IgA Nephropathy from Other Renal Diseases. PLoS ONE, 2014, 9, e98081.	2.5	93
44	GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genetics, 2017, 13, e1006609.	3.5	92
45	lgA nephropathy: an update. Current Opinion in Nephrology and Hypertension, 2004, 13, 171-179.	2.0	88
46	Clustered O-Glycans of IgA1. Molecular and Cellular Proteomics, 2010, 9, 2545-2557.	3.8	86
47	Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Analytical and Bioanalytical Chemistry, 2007, 389, 1397-1407.	3.7	85
48	The Fap1 fimbrial adhesin is a glycoprotein: antibodies specific for the glycan moiety block the adhesion of Streptococcus parasanguis in an in vitro tooth model. Molecular Microbiology, 2002, 43, 147-157.	2.5	83
49	Electrophoretic methods for analysis of urinary polypeptides in IgAâ€associated renal diseases. Electrophoresis, 2007, 28, 4469-4483.	2.4	83
50	Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Molecular Immunology, 2007, 44, 2598-2604.	2.2	80
51	Secondary IgA nephropathy. Kidney International, 2018, 94, 674-681.	5.2	79
52	TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6–mediated pathways in IgA nephropathy. Kidney International, 2020, 97, 340-349.	5.2	78
53	Genetic studies of IgA nephropathy: past, present, and future. Pediatric Nephrology, 2010, 25, 2257-2268.	1.7	77
54	The IgA1 immune complex–mediated activation of the MAPK/ERK kinase pathway in mesangial cells is associated with glomerular damage in IgA nephropathy. Kidney International, 2012, 82, 1284-1296.	5.2	75

#	Article	IF	CITATIONS
55	Galactose-Deficient IgA1 in African Americans with IgA Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 2069-2074.	4.5	73
56	Changes in Nephritogenic Serum Galactose-Deficient IgA1 in IgA Nephropathy following Tonsillectomy and Steroid Therapy. PLoS ONE, 2014, 9, e89707.	2.5	72
57	Glomerular Immunodeposits of Patients with IgA Nephropathy Are Enriched for IgG Autoantibodies Specific for Galactose-Deficient IgA1. Journal of the American Society of Nephrology: JASN, 2019, 30, 2017-2026.	6.1	72
58	Naturally Occurring Structural Isomers in Serum IgA1 <i>O</i> -Glycosylation. Journal of Proteome Research, 2012, 11, 692-702.	3.7	68
59	Analysis of IgA1 <i>N</i> -Glycosylation and Its Contribution to Fcl±RI Binding. Biochemistry, 2008, 47, 11285-11299.	2.5	66
60	Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics - Clinical Applications, 2009, 3, 1029-1043.	1.6	66
61	Markers for the progression of IgA nephropathy. Journal of Nephrology, 2016, 29, 535-541.	2.0	66
62	Heterogeneity of O-glycosylation in the hinge region of human IgA1. Molecular Immunology, 2000, 37, 1047-1056.	2.2	65
63	The genetics of IgA nephropathy. Nature Clinical Practice Nephrology, 2007, 3, 325-338.	2.0	64
64	lgA1 immune complexes from pediatric patients with IgA nephropathy activate cultured human mesangial cells. Nephrology Dialysis Transplantation, 2011, 26, 3451-3457.	0.7	64
65	Aberrant Glycosylation of the IgA1 Molecule in IgA Nephropathy. Seminars in Nephrology, 2018, 38, 461-476.	1.6	61
66	Serum levels of galactose-deficient immunoglobulin (Ig) A1 and related immune complex are associated with disease activity of IgA nephropathy. Clinical and Experimental Nephrology, 2014, 18, 770-777.	1.6	59
67	Serum galactose-deficient-lgA1 and lgG autoantibodies correlate in patients with lgA nephropathy. PLoS ONE, 2018, 13, e0190967.	2.5	56
68	Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Expert Opinion on Medical Diagnostics, 2013, 7, 615-627.	1.6	55
69	Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma. Cellular and Molecular Life Sciences, 2013, 70, 829-839.	5.4	55
70	New Insights into the Pathogenesis of IgA Nephropathy. Kidney Diseases (Basel, Switzerland), 2015, 1, 8-18.	2.5	54
71	Development of a Model of Early-Onset IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2012, 23, 1364-1374.	6.1	51
72	IgA-containing immune complexes in the urine of IgA nephropathy patients. Nephrology Dialysis Transplantation, 2006, 21, 2478-2484.	0.7	50

#	Article	IF	Citations
73	Inhibition of STAT3 Signaling Reduces IgA1 Autoantigen Production in IgA Nephropathy. Kidney International Reports, 2017, 2, 1194-1207.	0.8	49
74	Urinary biomarkers of IgA nephropathy and other IgA-associated renal diseases. World Journal of Urology, 2007, 25, 467-476.	2.2	48
75	Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: Role of cysteine alkylation during sample processing. Journal of Proteomics, 2013, 92, 299-312.	2.4	48
76	The Combined Role of Galactose-Deficient IgA1 and Streptococcal IgA–Binding M Protein in Inducing IL-6 and C3 Secretion from Human Mesangial Cells: Implications for IgA Nephropathy. Journal of Immunology, 2014, 193, 317-326.	0.8	47
77	Prognostic Value of Serum Biomarkers of Autoimmunity for Recurrence of IgA Nephropathy after Kidney Transplantation. Journal of the American Society of Nephrology: JASN, 2017, 28, 1943-1950.	6.1	46
78	Identification and Characterization of CMP-NeuAc:GalNAc-IgA1 $\hat{l}\pm2$,6-Sialyltransferase in IgA1-producing Cells. Journal of Molecular Biology, 2007, 369, 69-78.	4.2	44
79	Determination of Severity of Murine IgA Nephropathy by Glomerular Complement Activation by Aberrantly Glycosylated IgA and Immune Complexes. American Journal of Pathology, 2012, 181, 1338-1347.	3.8	42
80	Aberrant Glycosylation of IgA1 and Anti-Glycan Antibodies in IgA Nephropathy: Role of Mucosal Immune System. Advances in Oto-Rhino-Laryngology, 2011, 72, 60-63.	1.6	40
81	Covalent structure of mutacin 1140 and a novel method for the rapid identification of lantibiotics. FEBS Journal, 2000, 267, 6810-6816.	0.2	39
82	Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureGN Study. Kidney International Reports, 2018, 3, 1373-1384.	0.8	39
83	lgA vasculitis with nephritis: update of pathogenesis with clinical implications. Pediatric Nephrology, 2022, 37, 719-733.	1.7	35
84	Recognition of Galactose-Deficient <i>O</i> -Glycans in the Hinge Region of IgA1 by <i>N</i> -Acetylgalactosamine-Specific Snail Lectins: A Comparative Binding Study. Biochemistry, 2010, 49, 5671-5682.	2.5	33
85	lgA glycosylation and immune complex formation in IgAN. Seminars in Immunopathology, 2021, 43, 669-678.	6.1	33
86	In vitro-generated immune complexes containing galactose-deficient IgA1 stimulate proliferation of mesangial cells. Results in Immunology, 2012, 2, 166-172.	2.2	32
87	Galactose-Deficient IgA1 as a Candidate Urinary Polypeptide Marker of IgA Nephropathy?. Disease Markers, 2016, 2016, 1-6.	1.3	32
88	Membrane-Assisted Online Renaturation for Automated Microfluidic Lectin Blotting. Journal of the American Chemical Society, 2011, 133, 19610-19613.	13.7	31
89	Pathogenesis of IgA Nephropathy: Current Understanding and Implications for Development of Disease-Specific Treatment. Journal of Clinical Medicine, 2021, 10, 4501.	2.4	30
90	Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Research and Therapy, 2014, 11, 23.	1.7	29

#	Article	lF	Citations
91	N-Acetylgalactosaminide $\hat{l}\pm 2,6$ -sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy. Nephrology Dialysis Transplantation, 2015, 30, 234-238.	0.7	29
92	Distinct Fcl receptor N-glycans modulate the binding affinity to immunoglobulin A (IgA) antibodies. Journal of Biological Chemistry, 2019, 294, 13995-14008.	3.4	29
93	Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PLoS ONE, 2019, 14, e0212254.	2.5	29
94	Enzymatic Sialylation of IgA1 O-Glycans: Implications for Studies of IgA Nephropathy. PLoS ONE, 2014, 9, e99026.	2.5	28
95	Somatic Mutations Modulate Autoantibodies against Galactose-Deficient IgA1 in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2016, 27, 3278-3284.	6.1	27
96	Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. Journal of Autoimmunity, 2021, 118, 102593.	6.5	27
97	Detection of Antimicrobials in Bee Products with Activity Against Viridans Streptococci. Journal of Alternative and Complementary Medicine, 2000, 6, 383-389.	2.1	26
98	A systematic review of the literature on mechanisms of 5-nitroimidazole resistance in <i>Trichomonas vaginalis </i> . Parasitology, 2020, 147, 1383-1391.	1.5	26
99	Leukemia Inhibitory Factor Signaling Enhances Production of Galactose-Deficient IgA1 in IgA Nephropathy. Kidney Diseases (Basel, Switzerland), 2020, 6, 168-180.	2.5	26
100	IgA Nephropathy: Characterization of IgG Antibodies Specific for Galactose-Deficient IgA1. , 2007, 157, 129-133.		25
101	Cellular Signaling and Production of Galactose-Deficient IgA1 in IgA Nephropathy, an Autoimmune Disease. Journal of Immunology Research, 2014, 2014, 1-10.	2.2	24
102	Development of animal models of human IgA nephropathy. Drug Discovery Today: Disease Models, 2014, 11, 5-11.	1.2	24
103	lgA nephropathy enigma. Clinical Immunology, 2016, 172, 72-77.	3.2	24
104	Aberrantly Glycosylated IgA1 in IgA Nephropathy: What We Know and What We Don't Know. Journal of Clinical Medicine, 2021, 10, 3467.	2.4	24
105	Autoantibodies Specific for Galactose-Deficient IgA1 in IgA Vasculitis With Nephritis. Kidney International Reports, 2019, 4, 1717-1724.	0.8	22
106	Toward Noninvasive Diagnosis of IgA Nephropathy: A Pilot Urinary Metabolomic and Proteomic Study. Disease Markers, 2016, 2016, 1-9.	1.3	21
107	Pathogenesis of immunoglobulin A nephropathy. Current Opinion in Nephrology and Hypertension, 2013, 22, 287-294.	2.0	20
108	HIV-1 Envelope Glycan Moieties Modulate HIV-1 Transmission. Journal of Virology, 2014, 88, 14258-14267.	3.4	20

#	Article	IF	Citations
109	IgA Nephropathy: Current Views of Immune Complex Formation. , 2007, 157, 56-63.		19
110	Glomerulonephritis after hematopoietic cell transplantation: IgA nephropathy with increased excretion of galactose-deficient IgA1. Nephrology Dialysis Transplantation, 2010, 25, 1708-1713.	0.7	18
111	Analysis of O-glycoforms of the IgA1 hinge region by sequential deglycosylation. Scientific Reports, 2020, 10, 671.	3.3	18
112	Serum Galactose-Deficient IgA1 Level Is Not Associated with Proteinuria in Children with IgA Nephropathy. International Journal of Nephrology, 2012, 2012, 1-7.	1.3	17
113	Defining HIV-1 Envelope N-Glycan Microdomains through Site-Specific Heterogeneity Profiles. Journal of Virology, 2019, 93, .	3.4	15
114	Does the renal expression of Toll-like receptors play a role in patients with IgA nephropathy?. Journal of Nephrology, 2020, 33, 307-316.	2.0	14
115	The Kinetics of Glomerular Deposition of Nephritogenic IgA. PLoS ONE, 2014, 9, e113005.	2.5	13
116	Immunoglobulin A nephropathy is characterized by anticommensal humoral immune responses. JCI Insight, 2022, 7 , .	5.0	13
117	Reevaluation of the Mucosa-Bone Marrow Axis in IgA Nephropathy with Animal Models. Advances in Oto-Rhino-Laryngology, 2011, 72, 64-67.	1.6	12
118	IgA Nephropathy: A Clinical Overview. , 2007, 157, 19-26.		11
119	Production of N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) fused with secretory signal \lg° in insect cells. Protein Expression and Purification, 2012, 81, 175-180.	1.3	11
120	IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2. Glycobiology, 2019, 29, 543-556.	2.5	9
121	Outcome of 313 Czech Patients With IgA Nephropathy After Renal Transplantation. Frontiers in Immunology, 2021, 12, 726215.	4.8	9
122	Serial Galactose-Deficient IgA1 Levels in Children with IgA Nephropathy and Healthy Controls. International Journal of Nephrology, 2017, 2017, 1-5.	1.3	8
123	Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Review of Proteomics, 2020, 17, 275-296.	3.0	8
124	Association of IgG co-deposition with serum levels of galactose-deficient IgA1 in pediatric IgA nephropathy. Clinical Nephrology, 2012, 78, 465-469.	0.7	8
125	Pathogenic potential of galactoseâ€deficient IgA1 in IgA nephropathy. Nephrology, 2002, 7, S92.	1.6	7
126	Galactosylation of Serum IgA1 O-Glycans in Celiac Disease. Journal of Clinical Immunology, 2011, 31, 74-79.	3.8	7

#	Article	IF	Citations
127	Quantitative assessment of successive carbohydrate additions to the clustered (i>O-glycosylation sites of IgA1 by glycosyltransferases. Glycobiology, 2021, 31, 540-556.	2.5	7
128	IgA Immune-Complex. , 2009, , 177-191.		7
129	Immunoglobulin A Glycosylation and Its Role in Disease. Experientia Supplementum (2012), 2021, 112, 433-477.	0.9	7
130	Pathogenic potential of galactoseâ€deficient IgA1 in IgA nephropathy. Nephrology, 2002, 7, S92.	1.6	6
131	Upregulated proteoglycan-related signaling pathways in fluid flow shear stress-treated podocytes. American Journal of Physiology - Renal Physiology, 2020, 319, F312-F322.	2.7	6
132	Immune profile of IgA-dominant diffuse proliferative glomerulonephritis. CKJ: Clinical Kidney Journal, 2014, 7, 479-483.	2.9	5
133	IgA Nephropathy and Related Diseases. , 2015, , 2023-2038.		5
134	The Serum Very-Low-Density Lipoprotein Serves as a Restriction Factor against Hepatitis C Virus Infection. Journal of Virology, 2015, 89, 6782-6791.	3.4	5
135	Assay for galactose-deficient IgA1 enables mechanistic studies with primary cells from IgA nephropathy patients. BioTechniques, 2018, 65, 71-77.	1.8	5
136	Glomerular deposition of galactose-deficient IgA1-containing immune complexes via glomerular endothelial cell injuries. Nephrology Dialysis Transplantation, 2022, 37, 1629-1636.	0.7	5
137	Authors' reply:. American Journal of Kidney Diseases, 2000, 35, 555-556.	1.9	4
138	What insights can proteomics give us into IgA nephropathy (Berger's disease)?. Expert Review of Proteomics, 2017, 14, 645-647.	3.0	4
139	Glycan Positioning Impacts HIV-1 Env Glycan-Shield Density, Function, and Recognition by Antibodies. IScience, 2020, 23, 101711.	4.1	4
140	Transcription Factor \hat{l}^2 -Catenin Plays a Key Role in Fluid Flow Shear Stress-Mediated Glomerular Injury in Solitary Kidney. Cells, 2021, 10, 1253.	4.1	4
141	Cytokines and Production of Aberrantly <i>O</i> -Glycosylated IgA1, the Main Autoantigen in IgA Nephropathy. Journal of Interferon and Cytokine Research, 2022, 42, 301-315.	1.2	4
142	lgA Vasculitis with Nephritis in Adults: Histological and Clinical Assessment. Journal of Clinical Medicine, 2021, 10, 4851.	2.4	3
143	Mesangioproliferative Kidney Diseases and Platelet-Derived Growth Factor–Mediated AXL Phosphorylation. Kidney Medicine, 2021, 3, 1003-1013.e1.	2.0	2
144	Tissue distribution and biological activities of immune complexes are determined by their size and composition. Nephrology Dialysis Transplantation, 2010, 25, 1007-1007.	0.7	1

#	Article	IF	CITATIONS
145	Heterogeneity of Aberrant O-Glycosylation of IgA1 in IgA Nephropathy. , 2016, , 53-68.		1
146	Covalent structure of mutacin 1140 and a novel method for the rapid identification of lantibiotics. FEBS Journal, 2000, 267, 6810-6816.	0.2	1
147	Immunoglobulin A nephropathy and Henoch–Schönlein purpura nephritis. , 2006, , 213-221.		1
148	SP135ANTIGLYCAN IGG AUTOANTIBODY PREDICTS THE OXFORD CLASSIFICATION SCORES S AND T IN IGA NEPHROPATHY. Nephrology Dialysis Transplantation, 2016, 31, i130-i131.	0.7	O
149	P0473LONGITUDINAL CHANGES OF IGA1 O-GLYCOFORM IN IGA NEPHROPATHY. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	O
150	208 Identification of Trichomonas vaginalis 5-nitroimidazole resistance targets to inform future drug development. Journal of Clinical and Translational Science, 2022, 6, 32-32.	0.6	0