Volker Vallon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6803042/publications.pdf Version: 2024-02-01

		10986	15732
227	17,971	71	125
papers	citations	h-index	g-index
229	229	229	13138
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Role of the macula densa sodium glucose cotransporter type 1-neuronal nitric oxide synthase-tubuloglomerular feedback pathway in diabetic hyperfiltration. Kidney International, 2022, 101, 541-550.	5.2	8
2	SGLT2 Inhibition and Uric Acid Excretion in Patients with Type 2 Diabetes and Normal Kidney Function. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 663-671.	4.5	30
3	Sustained Exposure to the SGLT2 Inhibitor Ertugliflozin, But Not NHEâ€l Inhibition By Cariporide, Attenuates Adrenergic Stimulation of Cytosolic CA ²⁺ Levels in Spontaneously Contracting Cardiac Myocytes. FASEB Journal, 2022, 36, .	0.5	0
4	The Pathophysiological Basis of Diabetic Kidney Protection by Inhibition of SGLT2 and SGLT1. Kidney and Dialysis, 2022, 2, 349-368.	1.0	4
5	Protecting the Kidney: The Unexpected Logic of Inhibiting a Glucose Transporter. Clinical Pharmacology and Therapeutics, 2022, 112, 434-438.	4.7	2
6	Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annual Review of Physiology, 2021, 83, 503-528.	13.1	170
7	SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. American Journal of Kidney Diseases, 2021, 77, 94-109.	1.9	88
8	SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Diabetes, 2021, 70, 1-16.	0.6	53
9	Deletion of PTEN and VDR impair glucose and lipid metabolism. FASEB Journal, 2021, 35, .	0.5	0
10	Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats. American Journal of Physiology - Renal Physiology, 2021, 320, F761-F771.	2.7	38
11	Basal renal phenotype and response to induction of aristolochic acid nephropathy in mice lacking the neutral amino acid transporter BOAT1 (SLC6A19). FASEB Journal, 2021, 35, .	0.5	1
12	UAB-UCSD O'Brien Center for Acute Kidney Injury Research. American Journal of Physiology - Renal Physiology, 2021, 320, F870-F882.	2.7	4
13	Knockout of Macula Densa Neuronal Nitric Oxide Synthase Increases Blood Pressure in db/db Mice. Hypertension, 2021, 78, 1760-1770.	2.7	6
14	Renal Tubular Handling of Glucose and Fructose in Health and Disease. , 2021, 12, 2995-3044.		10
15	Extracellular Nucleotides and P2 Receptors in Renal Function. Physiological Reviews, 2020, 100, 211-269.	28.8	58
16	Renal effects of SGLT2 inhibitors. Current Opinion in Nephrology and Hypertension, 2020, 29, 190-198.	2.0	65
17	A special issue on glucose transporters in health and disease. Pflugers Archiv European Journal of Physiology, 2020, 472, 1107-1109.	2.8	6
18	A role for tubular Na ⁺ /H ⁺ exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. American Journal of Physiology - Renal Physiology, 2020, 319, F712-F728.	2.7	115

#	Article	IF	CITATIONS
19	The role of renal hypoxia in the pathogenesis ofÂdiabetic kidney disease: a promising target forÂnewer renoprotective agents including SGLT2Âinhibitors?. Kidney International, 2020, 98, 579-589.	5.2	111
20	Glucose transporters in the kidney in health and disease. Pflugers Archiv European Journal of Physiology, 2020, 472, 1345-1370.	2.8	69
21	The tubular hypothesis of nephron filtration and diabetic kidney disease. Nature Reviews Nephrology, 2020, 16, 317-336.	9.6	224
22	Gene knockout of the Na ⁺ -glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion. American Journal of Physiology - Renal Physiology, 2020, 318, F1100-F1112.	2.7	27
23	Western Diet Promotes Renal Injury, Inflammation, and Fibrosis in a Murine Model of Alström Syndrome. Nephron, 2020, 144, 400-412.	1.8	3
24	Osmotic diuresis by SGLT2 inhibition stimulates vasopressinâ€induced water reabsorption to maintain body fluid volume. Physiological Reports, 2020, 8, e14360.	1.7	70
25	Absence of Naâ€Glucose Cotransporter SGLT2 Does Not Protect the Kidney in a Murine Model of Renal Ischemiaâ€Reperfusion Injury. FASEB Journal, 2020, 34, 1-1.	0.5	0
26	Effects of Acute SGLT2 Blockade and Dietary NaCl on Glomerular Hemodynamics in Diabetic Rats. FASEB Journal, 2020, 34, 1-1.	0.5	2
27	Renal Clearance of Fibroblast Growth Factor-23 (FGF23) and its Fragments in Humans. Journal of Bone and Mineral Research, 2020, 37, 1170-1178.	2.8	3
28	Renal Effects of Sodium-Glucose Co-Transporter Inhibitors. American Journal of Medicine, 2019, 132, S30-S38.e4.	1.5	6
29	Effect of renal tubule-specific knockdown of the Na ⁺ /H ⁺ exchanger NHE3 in Akita diabetic mice. American Journal of Physiology - Renal Physiology, 2019, 317, F419-F434.	2.7	49
30	Knockout of Na ⁺ -glucose cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase NOS1 in the macula densa and glomerular hyperfiltration. American Journal of Physiology - Renal Physiology, 2019, 317, F207-F217.	2.7	44
31	How Do Kidneys Adapt to a Deficit or Loss in Nephron Number?. Physiology, 2019, 34, 189-197.	3.1	34
32	Gene deletion of the Na ⁺ -glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion. American Journal of Physiology - Renal Physiology, 2019, 316, F1201-F1210.	2.7	26
33	Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia. Journal of the American Society of Nephrology: JASN, 2019, 30, 578-593.	6.1	70
34	Renal Effects of Sodium-Glucose Co-Transporter Inhibitors. American Journal of Cardiology, 2019, 124, S28-S35.	1.6	40
35	SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. American Journal of Physiology - Renal Physiology, 2019, 316, F173-F185.	2.7	105
36	Renal Effects of Incretin-Based Diabetes Therapies: Pre-clinical Predictions and Clinical Trial Outcomes. Current Diabetes Reports, 2018, 18, 28.	4.2	8

#	Article	IF	CITATIONS
37	The Potential Role of SGLT2 Inhibitors in the Treatment of Type 1 Diabetes Mellitus. Drugs, 2018, 78, 717-726.	10.9	60
38	Renal tubular solute transport and oxygen consumption. Current Opinion in Nephrology and Hypertension, 2018, 27, 384-389.	2.0	3
39	Tubular Recovery after Acute Kidney Injury. Nephron, 2018, 140, 140-143.	1.8	18
40	SGLT2 inhibition and kidney protection. Clinical Science, 2018, 132, 1329-1339.	4.3	128
41	Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat. American Journal of Physiology - Renal Physiology, 2018, 315, F653-F664.	2.7	39
42	Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis. American Journal of Physiology - Renal Physiology, 2018, 314, F643-F657.	2.7	34
43	Organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin. American Journal of Physiology - Renal Physiology, 2018, 315, F386-F394.	2.7	26
44	SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism. American Journal of Physiology - Renal Physiology, 2018, 314, F969-F984.	2.7	100
45	Development of SGLT1 and SGLT2 inhibitors. Diabetologia, 2018, 61, 2079-2086.	6.3	212
46	RNA sequencing analysis in the transition from acute to chronic kidney injury with identification of Myoc as a marker of sustained kidney impairment. FASEB Journal, 2018, 32, 849.4.	0.5	0
47	Tubular NHE3 is a determinant of the acute natriuretic and chronic blood pressure lowering effect of the SGLT2 inhibitor empagliflozin. FASEB Journal, 2018, 32, 620.17.	0.5	7
48	Renal function and integrity are preserved when hydroxyethyl starch is dosed to acutely restore blood pressure after blood loss in rats. FASEB Journal, 2018, 32, 721.11.	0.5	0
49	Absence of the Naâ€Glucose Cotransporter SGLT1 Ameliorates Kidney Recovery in a Murine Model of Acute Kidney Injury. FASEB Journal, 2018, 32, 849.5.	0.5	1
50	Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives. Diabetes/Metabolism Research and Reviews, 2017, 33, e2886.	4.0	149
51	SGK1-dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone. American Journal of Physiology - Renal Physiology, 2017, 312, F65-F76.	2.7	33
52	Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis. American Journal of Physiology - Renal Physiology, 2017, 312, F819-F835.	2.7	74
53	Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis. American Journal of Physiology - Renal Physiology, 2017, 313, F199-F209.	2.7	48
54	Cardiovascular and renal benefits of SGLT2 inhibition: insights from CANVAS. Nature Reviews Nephrology, 2017, 13, 517-518.	9.6	12

#	Article	IF	CITATIONS
55	Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia, 2017, 60, 215-225.	6.3	408
56	Sodium glucose cotransporter 2 inhibition in the diabetic kidney. Current Opinion in Nephrology and Hypertension, 2016, 25, 50-58.	2.0	83
57	Solute transport and oxygen consumption along the nephrons: effects of Na ⁺ transport inhibitors. American Journal of Physiology - Renal Physiology, 2016, 311, F1217-F1229.	2.7	72
58	Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Scientific Reports, 2016, 6, 26428.	3.3	119
59	A computational model for simulating solute transport and oxygen consumption along the nephrons. American Journal of Physiology - Renal Physiology, 2016, 311, F1378-F1390.	2.7	74
60	Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron. American Journal of Physiology - Renal Physiology, 2016, 310, F1269-F1283.	2.7	118
61	Tubular Transport in Acute Kidney Injury: Relevance for Diagnosis, Prognosis and Intervention. Nephron, 2016, 134, 160-166.	1.8	33
62	Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opinion on Therapeutic Targets, 2016, 20, 1109-1125.	3.4	129
63	PPARγ Agonist-Induced Fluid Retention Depends on αENaC Expression in Connecting Tubules. Nephron, 2015, 129, 68-74.	1.8	17
64	Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. American Journal of Physiology - Renal Physiology, 2015, 308, F1343-F1357.	2.7	110
65	A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 801-816.	3.0	54
66	Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences. Diabetes and Vascular Disease Research, 2015, 12, 78-89.	2.0	298
67	The Mechanisms and Therapeutic Potential of SGLT2 Inhibitors in Diabetes Mellitus. Annual Review of Medicine, 2015, 66, 255-270.	12.2	244
68	SGLT2 Inhibition Is Predicted to Increase NaCl Delivery to the Medullary Thick Ascending Limb But Not to Significantly Elevate Its Oxygen Consumption. FASEB Journal, 2015, 29, 959.3.	0.5	0
69	Do Tubular Changes in the Diabetic Kidney Affect the Susceptibility to Acute Kidney Injury?. Nephron Clinical Practice, 2014, 127, 133-138.	2.3	26
70	Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study. American Journal of Physiology - Renal Physiology, 2014, 307, F137-F146.	2.7	42
71	Tribbles Homolog 3 Attenuates Mammalian Target of Rapamycin Complex-2 Signaling and Inflammation in the Diabetic Kidney. Journal of the American Society of Nephrology: JASN, 2014, 25, 2067-2078.	6.1	37
72	Mineralocorticoid-Induced Sodium Appetite and Renal Salt Retention: Evidence for Common Signaling and Effector Mechanisms. Nephron Physiology, 2014, 128, 8-16.	1.2	32

#	Article	IF	CITATIONS
73	Molecular Mechanisms of Calcium-sensing Receptor-mediated Calcium Signaling in the Modulation of Epithelial Ion Transport and Bicarbonate Secretion. Journal of Biological Chemistry, 2014, 289, 34642-34653.	3.4	28
74	Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagonâ€like peptideÂ1 and dipeptidyl peptidaseÂ4. Experimental Physiology, 2014, 99, 1140-1145.	2.0	23
75	Reduced Renal Calcium Excretion in the Absence of Sclerostin Expression. Journal of the American Society of Nephrology: JASN, 2014, 25, 2159-2168.	6.1	19
76	Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. American Journal of Physiology - Renal Physiology, 2014, 306, F188-F193.	2.7	229
77	Dipeptidyl peptidase IV inhibitor lowers PPARÎ ³ agonist-induced body weight gain by affecting food intake, fat mass, and beige/brown fat but not fluid retention. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E388-E398.	3.5	14
78	SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. American Journal of Physiology - Renal Physiology, 2014, 306, F194-F204.	2.7	393
79	Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. American Journal of Physiology - Renal Physiology, 2013, 304, F156-F167.	2.7	318
80	Adenylyl Cyclase 6 Enhances NKCC2 Expression and Mediates Vasopressin-Induced Phosphorylation of NKCC2 and NCC. American Journal of Pathology, 2013, 182, 96-106.	3.8	58
81	Acute saline expansion increases nephron filtration and distal flow rate but maintains tubuloglomerular feedback responsiveness: role of adenosine A1 receptors. American Journal of Physiology - Renal Physiology, 2012, 303, F405-F411.	2.7	9
82	Expression of Na ⁺ - <scp>d</scp> -glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. American Journal of Physiology - Cell Physiology, 2012, 302, C1174-C1188.	4.6	157
83	A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. American Journal of Physiology - Renal Physiology, 2012, 302, F1293-F1299.	2.7	101
84	Natriuretic effect by exendin-4, but not the DPP-4 inhibitor alogliptin, is mediated via the GLP-1 receptor and preserved in obese type 2 diabetic mice. American Journal of Physiology - Renal Physiology, 2012, 303, F963-F971.	2.7	125
85	Peroxisome proliferator-activated receptor-Î ³ agonists repress epithelial sodium channel expression in the kidney. American Journal of Physiology - Renal Physiology, 2012, 302, F540-F551.	2.7	21
86	Intrinsic control of sodium excretion in the distal nephron by inhibitory purinergic regulation of the epithelial Na+ channel. Current Opinion in Nephrology and Hypertension, 2012, 21, 52-60.	2.0	37
87	Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R75-R83.	1.8	239
88	Renal Function in Diabetic Disease Models: The Tubular System in the Pathophysiology of the Diabetic Kidney. Annual Review of Physiology, 2012, 74, 351-375.	13.1	289
89	P2Y receptors and kidney function. Environmental Sciences Europe, 2012, 1, 731-742.	5.5	38
			_

90 <i>In Vivo</i> and <i>Ex Vivo</i> Analysis of Tubule Function. , 2012, 2, 2495-2525.

12

#	Article	IF	CITATIONS
91	Na+- <scp>d</scp> -glucose Cotransporter SGLT1 is Pivotal for Intestinal Glucose Absorption and Glucose-Dependent Incretin Secretion. Diabetes, 2012, 61, 187-196.	0.6	550
92	Serum- and glucocorticoid-inducible kinase 1 in the regulation of renal and extrarenal potassium transport. Clinical and Experimental Nephrology, 2012, 16, 73-80.	1.6	14
93	Adenylyl cyclase 6 determines AVPâ€induced membrane abundance and phosphorylation of NKCC2 and NCC. FASEB Journal, 2012, 26, 1152.7.	0.5	0
94	No extrarenal expression of SGLT2 and sex differences in renal expression. FASEB Journal, 2012, 26, 1099.5.	0.5	1
95	Impaired Regulation of Renal K Elimination in Mice Lacking SGLT1. FASEB Journal, 2012, 26, 1068.16.	0.5	0
96	Secondary hyperparathyroidism and impaired renal phosphate excretion in mice lacking adenylyl cyclase 6. FASEB Journal, 2012, 26, .	0.5	0
97	K + homeostasis is maintained with knockdown of big onductance K + channel in principal cells of connecting tubule/collecting duct. FASEB Journal, 2012, 26, 867.4.	0.5	0
98	Anomalous role for dietary salt in diabetes mellitus?. Nature Reviews Endocrinology, 2011, 7, 377-378.	9.6	8
99	SGLT2 Mediates Glucose Reabsorption in the Early Proximal Tubule. Journal of the American Society of Nephrology: JASN, 2011, 22, 104-112.	6.1	429
100	Estrogen Regulation of Duodenal Bicarbonate Secretion and Sex-Specific Protection of Human Duodenum. Gastroenterology, 2011, 141, 854-863.	1.3	49
101	Cardiac-Specific Overexpression of Caveolin-3 Attenuates Cardiac Hypertrophy and Increases Natriuretic Peptide Expression and Signaling. Journal of the American College of Cardiology, 2011, 57, 2273-2283.	2.8	86
102	Pathophysiology of the Diabetic Kidney. , 2011, 1, 1175-1232.		205
103	The proximal tubule in the pathophysiology of the diabetic kidney. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1009-R1022.	1.8	293
104	<i>Molecular determinants of renal glucose reabsorption</i> . Focus on "Glucose transport by human renal Na ⁺ / <scp>d</scp> -glucose cotransporters SGLT1 and SGLT2― American Journal of Physiology - Cell Physiology, 2011, 300, C6-C8.	4.6	32
105	Functional Maturation of Drug Transporters in the Developing, Neonatal, and Postnatal Kidney. Molecular Pharmacology, 2011, 80, 147-154.	2.3	59
106	P2Y ₂ receptor activation decreases blood pressure and increases renal Na ⁺ excretion. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R510-R518.	1.8	43
107	Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. American Journal of Physiology - Renal Physiology, 2011, 301, F463-F475.	2.7	86
108	Lack of SGLT1 enhances renal oxidative stress, reduces kidney weight, and blunts diabetic glomerular hyperfiltration. FASEB Journal, 2011, 25, 1038.2.	0.5	0

#	Article	IF	CITATIONS
109	Sodium–glucose transport: role in diabetes mellitus and potential clinical implications. Current Opinion in Nephrology and Hypertension, 2010, 19, 425-431.	2.0	45
110	Dietary Na ⁺ inhibits the open probability of the epithelial sodium channel in the kidney by enhancing apical P2Y ₂ â€receptor tone. FASEB Journal, 2010, 24, 2056-2065.	0.5	92
111	Adenylate Cyclase 6 Determines cAMP Formation and Aquaporin-2 Phosphorylation and Trafficking in Inner Medulla. Journal of the American Society of Nephrology: JASN, 2010, 21, 2059-2068.	6.1	83
112	Purinergic Inhibition of ENaC Produces Aldosterone Escape. Journal of the American Society of Nephrology: JASN, 2010, 21, 1903-1911.	6.1	62
113	Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes. American Journal of Physiology - Cell Physiology, 2010, 299, C374-C380.	4.6	69
114	TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1. American Journal of Physiology - Renal Physiology, 2010, 299, F965-F972.	2.7	71
115	SGLT2 mediates glucose reabsorption in the early proximal tubule. FASEB Journal, 2010, 24, 606.15.	0.5	0
116	SGK, renal function and hypertension. Journal of Nephrology, 2010, 23 Suppl 16, S124-9.	2.0	10
117	Thiazolidinedione-Induced Fluid Retention Is Independent of Collecting Duct αENaC Activity. Journal of the American Society of Nephrology: JASN, 2009, 20, 721-729.	6.1	75
118	Adenosine A ₁ Receptors Determine Glomerular Hyperfiltration and the Salt Paradox in Early Streptozotocin Diabetes Mellitus. Nephron Physiology, 2009, 111, p30-p38.	1.2	72
119	SGK1-sensitive renal tubular glucose reabsorption in diabetes. American Journal of Physiology - Renal Physiology, 2009, 296, F859-F866.	2.7	29
120	ATP and adenosine in the local regulation of water transport and homeostasis by the kidney. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R419-R427.	1.8	50
121	Expression and phosphorylation of the Na ⁺ -Cl ^{â^'} cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. American Journal of Physiology - Renal Physiology, 2009, 297, F704-F712.	2.7	225
122	Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1695-R1701.	1.8	54
123	β1-Integrin is required for kidney collecting duct morphogenesis and maintenance of renal function. American Journal of Physiology - Renal Physiology, 2009, 297, F210-F217.	2.7	67
124	Micropuncturing the nephron. Pflugers Archiv European Journal of Physiology, 2009, 458, 189-201.	2.8	38
125	Adenosine Receptors and the Kidney. Handbook of Experimental Pharmacology, 2009, , 443-470.	1.8	82
126	Targeting SGK1 in diabetes. Expert Opinion on Therapeutic Targets, 2009, 13, 1303-1311.	3.4	84

#	Article	IF	CITATIONS
127	The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Current Opinion in Nephrology and Hypertension, 2009, 18, 439-448.	2.0	125
128	Adenosine and Tubuloglomerular Feedback in the Pathophysiology of Acute Renal Failure. , 2009, , 128-134.		1
129	Urinary concentration is impared in mice lacking adenylyl cyclase 6. FASEB Journal, 2009, 23, 970.10.	0.5	1
130	Unmasking hyperactive ENaC in P2Y2 â€f―mice as a molecular mechanism for their hypertension. FASEB Journal, 2009, 23, 602.1.	0.5	0
131	Effect of Adenosine on Membrane Potential and Ca ²⁺ in Juxtaglomerular Cells. Kidney and Blood Pressure Research, 2008, 31, 94-103.	2.0	2
132	Regulation of the Na+-Clâ^' cotransporter by dietary NaCl: a role for WNKs, SPAK, OSR1, and aldosterone. Kidney International, 2008, 74, 1373-1375.	5.2	10
133	Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiological Genomics, 2008, 33, 180-192.	2.3	203
134	Vasopressin regulation of inner medullary collecting ducts and compensatory changes in mice lacking adenosine A ₁ receptors. American Journal of Physiology - Renal Physiology, 2008, 294, F638-F644.	2.7	17
135	Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. American Journal of Physiology - Renal Physiology, 2008, 294, F867-F873.	2.7	115
136	Ornithine decarboxylase inhibitor eliminates hyperresponsiveness of the early diabetic proximal tubule to dietary salt. American Journal of Physiology - Renal Physiology, 2008, 295, F995-F1002.	2.7	14
137	P2 receptors in the regulation of renal transport mechanisms. American Journal of Physiology - Renal Physiology, 2008, 294, F10-F27.	2.7	96
138	Adenosine and kidney function: Potential implications in patients with heart failure. European Journal of Heart Failure, 2008, 10, 176-187.	7.1	71
139	Paracrine Regulation of the Epithelial Na+ Channel in the Mammalian Collecting Duct by Purinergic P2Y2 Receptor Tone. Journal of Biological Chemistry, 2008, 283, 36599-36607.	3.4	119
140	Organic Anion Transporter 3 Contributes to the Regulation of Blood Pressure. Journal of the American Society of Nephrology: JASN, 2008, 19, 1732-1740.	6.1	72
141	DOCA unmasks saltâ€sensitivity of blood pressure in mice lacking P2Y 2 receptors. FASEB Journal, 2008, 22, 735.4.	0.5	0
142	Collecting ductâ€specific gene inactivation of αENaC in the mouse kidney does not attenuate rosiglitazoneâ€induced weight gain. FASEB Journal, 2008, 22, 947.14.	0.5	0
143	Functional significance of channels and transporters expressed in the inner ear and kidney. American Journal of Physiology - Cell Physiology, 2007, 293, C1187-C1208.	4.6	217
144	Lack of effect of extracellular adenosine generation and signaling on renal erythropoietin secretion during hypoxia. American Journal of Physiology - Renal Physiology, 2007, 293, F1501-F1511.	2.7	25

#	Article	IF	CITATIONS
145	The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. Kidney International, 2007, 72, 566-573.	5.2	143
146	Tubuloglomerular feedback responses of the downstream efferent resistance: Unmasking a role for adenosine?. Kidney International, 2007, 71, 837-839.	5.2	8
147	Combined Effects of Carbonic Anhydrase Inhibitor and Adenosine A ₁ Receptor Antagonist on Hemodynamic and Tubular Function in the Kidney. Kidney and Blood Pressure Research, 2007, 30, 388-399.	2.0	15
148	Mice lacking P2Y 2 receptors have saltâ€resistant hypertension and facilitated renal Na + and water reabsorption. FASEB Journal, 2007, 21, 3717-3726.	0.5	160
149	Adenosine A1 receptors determine effects of caffeine on total fluid intake but not caffeine appetite. European Journal of Pharmacology, 2007, 555, 174-177.	3.5	15
150	Aldosterone-induced Sgk1 relieves Dot1a-Af9–mediated transcriptional repression of epithelial Na+ channel α. Journal of Clinical Investigation, 2007, 117, 773-783.	8.2	150
151	Adenosine A 1 receptor blockade and the balance of bicarbonate/chloride transport in the proximal tubule. FASEB Journal, 2007, 21, A437.	0.5	0
152	Primary kidney growth and its consequences at the onset of diabetes mellitus. Amino Acids, 2006, 31, 1-9.	2.7	16
153	Renal Ca2+ handling in sgk1 knockout mice. Pflugers Archiv European Journal of Physiology, 2006, 452, 444-452.	2.8	17
154	Impaired ability to increase water excretion in mice lacking the taurine transporter gene TAUT. Pflugers Archiv European Journal of Physiology, 2006, 451, 668-677.	2.8	36
155	SGK1-dependent cardiac CTGF formation and fibrosis following DOCA treatment. Journal of Molecular Medicine, 2006, 84, 396-404.	3.9	111
156	Blunted DOCA/high salt induced albuminuria and renal tubulointerstitial damage in gene-targeted mice lacking SGK1. Journal of Molecular Medicine, 2006, 84, 737-746.	3.9	49
157	Resistance of mice lacking the serum- and glucocorticoid-inducible kinase SGK1 against salt-sensitive hypertension induced by a high-fat diet. American Journal of Physiology - Renal Physiology, 2006, 291, F1264-F1273.	2.7	62
158	Adenosine and Kidney Function. Physiological Reviews, 2006, 86, 901-940.	28.8	380
159	Blunted hypertensive effect of combined fructose and high-salt diet in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase SGK1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R935-R944.	1.8	64
160	Ecto-5′-nucleotidase (cd73)-dependent and -independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. American Journal of Physiology - Renal Physiology, 2006, 291, F282-F288.	2.7	62
161	Decreased Renal Organic Anion Secretion and Plasma Accumulation of Endogenous Organic Anions in OAT1 Knock-out Mice. Journal of Biological Chemistry, 2006, 281, 5072-5083.	3.4	204
162	DOCA-induced Phosphorylation of Glycogen Synthase Kinase 3ß. Cellular Physiology and Biochemistry, 2006, 17, 137-144.	1.6	37

#	Article	IF	CITATIONS
163	Mice Lacking Protein Kinase C Beta Present Modest Increases in Systolic Blood Pressure and NH ₄ Cl-Induced Metabolic Acidosis. Kidney and Blood Pressure Research, 2006, 29, 36-42.	2.0	3
164	Serum- and Glucocorticoid-Inducible Kinase 1 Mediates Salt Sensitivity of Glucose Tolerance. Diabetes, 2006, 55, 2059-2066.	0.6	41
165	(Patho)physiological Significance of the Serum- and Glucocorticoid-Inducible Kinase Isoforms. Physiological Reviews, 2006, 86, 1151-1178.	28.8	623
166	An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption. Journal of Clinical Investigation, 2006, 116, 1110-1116.	8.2	68
167	New insights into the role of serum- and glucocorticoid-inducible kinase SGK1 in the regulation of renal function and blood pressure. Current Opinion in Nephrology and Hypertension, 2005, 14, 59-66.	2.0	70
168	Transport regulation by the serum- and glucocorticoid-inducible kinase SGK1. Biochemical Society Transactions, 2005, 33, 213-215.	3.4	4
169	Expression and insights on function of potassium channel TWIK-1 in mouse kidney. Pflugers Archiv European Journal of Physiology, 2005, 451, 479-488.	2.8	46
170	The salt paradox and its possible implications in managing hypertensive diabetic patients. Current Hypertension Reports, 2005, 7, 141-147.	3.5	17
171	Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. Journal of Clinical Investigation, 2005, 115, 1651-1658.	8.2	410
172	Role of Sgk1 in salt and potassium homeostasis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R4-R10.	1.8	64
173	SGK1 as a determinant of kidney function and salt intake in response to mineralocorticoid excess. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R395-R401.	1.8	66
174	Lessons from Mouse Mutants of Epithelial Sodium Channel and Its Regulatory Proteins. Journal of the American Society of Nephrology: JASN, 2005, 16, 3160-3166.	6.1	47
175	Requirement of Intact Adenosine A ₁ Receptors for the Diuretic and Natriuretic Action of the Methylxanthines Theophylline and Caffeine. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 403-409.	2.5	107
176	KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17864-17869.	7.1	167
177	Evidence for a role of protein kinase C-α in urine concentration. American Journal of Physiology - Renal Physiology, 2004, 287, F299-F304.	2.7	33
178	Immunolocalization of protein kinase C isoenzymes α, βI, βII, Î′, and ε in mouse kidney. American Journal of Physiology - Renal Physiology, 2004, 287, F289-F298.	2.7	30
179	Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. American Journal of Physiology - Renal Physiology, 2004, 286, F8-F15.	2.7	204
180	Altered Renal Distal Tubule Structure and Renal Na+ and Ca2+ Handling in a Mouse Model for Gitelman's Syndrome. Journal of the American Society of Nephrology: JASN, 2004, 15, 2276-2288.	6.1	205

#	Article	IF	CITATIONS
181	Impaired Regulation of Renal K+ Elimination in the sgk1-Knockout Mouse. Journal of the American Society of Nephrology: JASN, 2004, 15, 885-891.	6.1	115
182	Functional consequences at the single-nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice. Pflugers Archiv European Journal of Physiology, 2004, 448, 214-221.	2.8	58
183	Kidney function in mice: thiobutabarbital versus ?-chloralose anesthesia. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 320-323.	3.0	24
184	Regulation of KCNE1-dependent K+ current by the serum and glucocorticoid-inducible kinase (SGK) isoforms. Pflugers Archiv European Journal of Physiology, 2003, 445, 601-606.	2.8	84
185	Tubuloglomerular feedback in the kidney: insights from gene-targeted mice. Pflugers Archiv European Journal of Physiology, 2003, 445, 470-476.	2.8	16
186	The Salt Paradox of the Early Diabetic Kidney Is Independent of Renal Innervation. Kidney and Blood Pressure Research, 2003, 26, 344-350.	2.0	14
187	Emotional instability but intact spatial cognition in adenosine receptor 1 knock out mice. Behavioural Brain Research, 2003, 145, 179-188.	2.2	58
188	Glomerular Hyperfiltration and the Salt Paradox in Early Type 1 Diabetes Mellitus. Journal of the American Society of Nephrology: JASN, 2003, 14, 530-537.	6.1	156
189	In vivo Studies of the Genetically Modified Mouse Kidney. Nephron Physiology, 2003, 94, p1-p5.	1.2	36
190	Tubuloglomerular Feedback and the Control of Glomerular Filtration Rate. Physiology, 2003, 18, 169-174.	3.1	65
191	Tubuloglomerular Feedback. , 2003, 86, 429-442.		5
192	Regulation of Channels by the Serum and Glucocorticoid-Inducible Kinase - Implications for Transport, Excitability and Cell Proliferation. Cellular Physiology and Biochemistry, 2003, 13, 41-50.	1.6	129
193	Blunted Apoptosis of Erythrocytes from Taurine Transporter Deficient Mice. Cellular Physiology and Biochemistry, 2003, 13, 337-346.	1.6	67
194	Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. Journal of Clinical Investigation, 2003, 112, 1906-1914.	8.2	202
195	Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. Journal of Clinical Investigation, 2003, 112, 1906-1914.	8.2	406
196	Salt-Sensitivity of Proximal Reabsorption Alters Macula Densa Salt and Explains the Paradoxical Effect of Dietary Salt on Glomerular Filtration Rate in Diabetes Mellitus. Journal of the American Society of Nephrology: JASN, 2002, 13, 1865-1871.	6.1	68
197	Protein Kinase C Beta Isoenzymes in Diabetic Kidneys and Their Relation to Nephroprotective Actions of the ACE Inhibitor Lisinopril. Kidney and Blood Pressure Research, 2002, 25, 329-340.	2.0	20
198	Human C-peptide acutely lowers glomerular hyperfiltration and proteinuria in diabetic rats: a dose-response study. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 365, 67-73.	3.0	47

#	Article	IF	CITATIONS
199	The complex role of nitric oxide in the regulation of glomerular ultrafiltration. Kidney International, 2002, 61, 782-785.	5.2	37
200	Impaired renal Na+ retention in the sgk1-knockout mouse. Journal of Clinical Investigation, 2002, 110, 1263-1268.	8.2	271
201	Impaired renal Na+ retention in the sgk1-knockout mouse. Journal of Clinical Investigation, 2002, 110, 1263-1268.	8.2	196
202	Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. Journal of Clinical Investigation, 2001, 107, 217-224.	8.2	204
203	Role of KCNE1-Dependent K+ Fluxes in Mouse Proximal Tubule. Journal of the American Society of Nephrology: JASN, 2001, 12, 2003-2011.	6.1	119
204	Feedback Control of Glomerular Vascular Tone in Neuronal Nitric Oxide Synthase Knockout Mice. Journal of the American Society of Nephrology: JASN, 2001, 12, 1599-1606.	6.1	82
205	Sodium reabsorption in thick ascending limb of Henle's loop: effect of potassium channel blockade in vivo. British Journal of Pharmacology, 2000, 130, 1255-1262.	5.4	15
206	Acute renal response to the non-peptide vasopressin V 2 -receptor antagonist SR 121463B in anesthetized rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 362, 201-207.	3.0	14
207	Role of Na ⁺ /H ⁺ exchanger NHE3 in nephron function: micropuncture studies with S3226, an inhibitor of NHE3. American Journal of Physiology - Renal Physiology, 2000, 278, F375-F379.	2.7	80
208	Postglomerular vasoconstriction induced by dopamine D ₃ receptor activation in anesthetized rats. American Journal of Physiology - Renal Physiology, 2000, 278, F570-F575.	2.7	17
209	Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. Journal of Clinical Investigation, 2000, 106, 289-298.	8.2	158
210	Eukaliuric diuresis and natriuresis in response to the KATP channel blocker U37883A: Micropuncture studies on the tubular site of action. British Journal of Pharmacology, 1999, 127, 1811-1818.	5.4	6
211	Glomerular Hyperfiltration in Experimental Diabetes Mellitus. Journal of the American Society of Nephrology: JASN, 1999, 10, 2569-2576.	6.1	287
212	Immunolocalization of Protein Kinase C Isoenzymes α, βI and βII in Rat Kidney. Journal of the American Society of Nephrology: JASN, 1999, 10, 1861-1873.	6.1	60
213	Eukaliuric natriuresis and diuresis in response to disprocynium24: studies on the tubular site of action. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 238-244.	3.0	0
214	Potassium diet as a determinant for the renal response to systemic potassium channel modulation in anesthetized rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 245-252.	3.0	5
215	Intratubular application of sodium azide inhibits loop of Henle reabsorption and tubuloglomerular feedback response in anesthetized rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 367-373.	3.0	9
216	Resetting protects efficiency of tubuloglomerular feedback. Kidney International, 1998, 54, S65-S70.	5.2	36

#	Article	IF	CITATIONS
217	Tubuloglomerular feedback and its role in acute renal failure. , 1998, , 613-622.		7
218	[7-D-ALA]-Angiotensin 1-7 Blocks Renal Actions of Angiotensin 1-7 in the Anesthetized Rat. Journal of Cardiovascular Pharmacology, 1998, 32, 164-167.	1.9	50
219	Effect of Intratubular Application of Angiotensin 1-7 on Nephron Function. Kidney and Blood Pressure Research, 1997, 20, 233-239.	2.0	42
220	Adenosine and Tubuloglomerular Feedback. Blood Purification, 1997, 15, 243-252.	1.8	29
221	Reduced proximal reabsorption resets tubuloglomerular feedback in euvolemic rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1414-R1420.	1.8	23
222	Effect of chronic salt loading on kidney function in early and established diabetes mellitus in rats. Translational Research, 1997, 130, 76-82.	2.3	39
223	Disprocynium24 induces a dopamine-independent, eukaliuric diuresis and natriuresis in the anaesthetized rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 846-849.	3.0	3
224	Role of adenosine in tubuloglomerular feedback and acute renal failure. Autonomic and Autacoid Pharmacology, 1996, 16, 377-380.	0.6	26
225	Agmatine, a bioactive metabolite of arginine. Production, degradation, and functional effects in the kidney of the rat Journal of Clinical Investigation, 1996, 97, 413-420.	8.2	149
226	Interactive Control of Renal Function by $\hat{l}\pm 2$ -Adrenergic System and Nitric Oxide. Journal of Cardiovascular Pharmacology, 1995, 26, 916-922.	1.9	18
227	Dipyridamole prevents diabetes-induced alterations of kidney function in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 217-22.	3.0	35