
Fuyuto Terui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/680287/publications.pdf Version: 2024-02-01

Ευνίτο Τεριί

#	Article	IF	CITATIONS
1	Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites. Science, 2023, 379, .	12.6	97
2	Pebbles and sand on asteroid (162173) Ryugu: In situ observation and particles returned to Earth. Science, 2022, 375, 1011-1016.	12.6	78
3	Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nature Astronomy, 2022, 6, 214-220.	10.1	136
4	Mission objectives, planning, and achievements of Hayabusa2. , 2022, , 5-23.		3
5	Target markers for image-based autonomous navigation. , 2022, , 341-357.		1
6	GNC design and results of Hayabusa2's initial remote sensing operations. , 2022, , 137-175.		0
7	Sensitivity degradation of optical navigation camera and attempts for dust removal. , 2022, , 415-431.		1
8	MASCOT lander release operation. , 2022, , 229-240.		0
9	Overview of the Hayabusa2 asteroid proximity operations. , 2022, , 113-136.		1
10	Hayabusa2's kinetic impact experiment. , 2022, , 291-312.		0
11	Site selection for the Hayabusa2 artificial cratering and subsurface material sampling on Ryugu. Planetary and Space Science, 2022, 219, 105519.	1.7	4
12	Rotational effect as the possible cause of the east-west asymmetric crater rims on Ryugu observed by LIDAR data. Icarus, 2021, 354, 114073.	2.5	5
13	Ballistic deployment of the Hayabusa2 artificial landmarks in the microgravity environment of Ryugu. Icarus, 2021, 358, 114220.	2.5	13
14	Collisional history of Ryugu's parent body from bright surface boulders. Nature Astronomy, 2021, 5, 39-45.	10.1	42
15	Thermally altered subsurface material of asteroid (162173) Ryugu. Nature Astronomy, 2021, 5, 246-250.	10.1	47
16	Alignment determination of the Hayabusa2 laser altimeter (LIDAR). Earth, Planets and Space, 2021, 73, .	2.5	3
17	Anomalously porous boulders on (162173) Ryugu as primordial materials from its parent body. Nature Astronomy, 2021, 5, 766-774.	10.1	30
18	Hayabusa2 extended mission: New voyage to rendezvous with a small asteroid rotating with a short period. Advances in Space Research, 2021, 68, 1533-1555.	2.6	20

Fuyuto Terui

#	Article	IF	CITATIONS
19	Hayabusa2 pinpoint touchdown near the artificial crater on Ryugu: Trajectory design and guidance performance. Advances in Space Research, 2021, 68, 3093-3140.	2.6	9
20	Spectrally blue hydrated parent body of asteroid (162173) Ryugu. Nature Communications, 2021, 12, 5837.	12.8	23
21	The spatial distribution of impact craters on Ryugu. Icarus, 2020, 338, 113527.	2.5	25
22	Improving Hayabusa2 trajectory by combining LIDAR data and a shape model. Icarus, 2020, 338, 113574.	2.5	16
23	Hayabusa2 Landing Site Selection: Surface Topography of Ryugu and Touchdown Safety. Space Science Reviews, 2020, 216, 1.	8.1	17
24	Motion reconstruction of the small carry-on impactor aboard Hayabusa2. Astrodynamics, 2020, 4, 289-308.	2.4	7
25	Hayabusa2's station-keeping operation in the proximity of the asteroid Ryugu. Astrodynamics, 2020, 4, 349-375.	2.4	19
26	The deep-space multi-object orbit determination system and its application to Hayabusa2's asteroid proximity operations. Astrodynamics, 2020, 4, 377-392.	2.4	19
27	Guidance, navigation, and control of Hayabusa2 touchdown operations. Astrodynamics, 2020, 4, 393-409.	2.4	25
28	Ground-based low altitude hovering technique of Hayabusa2. Astrodynamics, 2020, 4, 331-347.	2.4	4
29	Hayabusa2's superior solar conjunction mission operations: planning and post-operation results. Astrodynamics, 2020, 4, 265-288.	2.4	10
30	Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution. Science, 2020, 368, 654-659.	12.6	158
31	Hayabusa2 spacecraft dynamics and operational design of final descent and touchdown in sampling mission. , 2020, , .		1
32	Thermophysical properties of the surface of asteroid 162173 Ryugu: Infrared observations and thermal inertia mapping. Icarus, 2020, 348, 113835.	2.5	48
33	Design and flight results of GNC systems in Hayabusa2 descent operations. Astrodynamics, 2020, 4, 105-117.	2.4	19
34	Design and Reconstruction of the Hayabusa2 Precision Landing on Ryugu. Journal of Spacecraft and Rockets, 2020, 57, 1033-1060.	1.9	20
35	Modeling and analysis of Hayabusa2 touchdown. Astrodynamics, 2020, 4, 119-135.	2.4	30
36	Hayabusa2's kinetic impact experiment: Operational planning and results. Acta Astronautica, 2020, 175, 362-374.	3.2	14

Fuyuto Terui

#	Article	IF	CITATIONS
37	Highly porous nature of a primitive asteroid revealed by thermal imaging. Nature, 2020, 579, 518-522.	27.8	100
38	An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science, 2020, 368, 67-71.	12.6	183
39	Image-based autonomous navigation of Hayabusa2 using artificial landmarks: The design and brief in-flight results of the first landing on asteroid Ryugu. Astrodynamics, 2020, 4, 89-103.	2.4	34
40	Hayabusa2 mission status: Landing, roving and cratering on asteroid Ryugu. Acta Astronautica, 2020, 171, 42-54.	3.2	111
41	GNC strategies and flight results of Hayabusa2 first touchdown operation. Acta Astronautica, 2020, 174, 131-147.	3.2	19
42	Dynamic precise orbit determination of Hayabusa2 using laser altimeter (LIDAR) and image tracking data sets. Earth, Planets and Space, 2020, 72, .	2.5	11
43	Initial Achievements of Hayabusa2 in Asteroid Proximity Phase. Transactions of the Japan Society for Aeronautical and Space Sciences, 2020, 63, 115-123.	0.7	2
44	The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science, 2019, 364, 272-275.	12.6	262
45	Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile. Science, 2019, 364, 268-272.	12.6	410
46	The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science, 2019, 364, 252.	12.6	313
47	Development of the Laser Altimeter (LIDAR) for Hayabusa2. Space Science Reviews, 2017, 208, 33-47.	8.1	64