
Atsushi Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6802593/publications.pdf Version: 2024-02-01

ΔΤΩΙΙΩΗΙ ΥΛΜΛΜΟΤΟ

#	Article	IF	CITATIONS
1	Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy and Environmental Science, 2016, 9, 517-529.	30.8	287
2	High-performance thermoelectric mineral Cu12â^' <i>x</i> Ni <i>x</i> Sb4S13 tetrahedrite. Journal of Applied Physics, 2013, 113, .	2.5	262
3	Excessively Doped PbTe with Ge-Induced Nanostructures Enables High-Efficiency Thermoelectric Modules. Joule, 2018, 2, 1339-1355.	24.0	169
4	Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1â^'x prepared by bulk mechanical alloying and hot pressing. Journal of Alloys and Compounds, 2000, 312, 326-330.	5.5	143
5	A solution-processed TiS ₂ /organic hybrid superlattice film towards flexible thermoelectric devices. Journal of Materials Chemistry A, 2017, 5, 564-570.	10.3	130
6	Matrix-Free Laser Desorption/Ionization-Mass Spectrometry Using Self-Assembled Germanium Nanodots. Analytical Chemistry, 2007, 79, 4827-4832.	6.5	100
7	Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1â^'x prepared via bulk mechanical alloying and hot pressing. Journal of Alloys and Compounds, 2000, 309, 225-228.	5.5	97
8	Thermoelectric Properties of Y-Doped Polycrystalline SrTiO3. Japanese Journal of Applied Physics, 2004, 43, L540-L542.	1.5	92
9	Thermoelectric properties and figure of merit of a Te-doped InSb bulk single crystal. Applied Physics Letters, 2005, 87, 201902.	3.3	82
10	Determination of Thermoelectric Module Efficiency: A Survey. Journal of Electronic Materials, 2014, 43, 2274-2286.	2.2	66
11	Thermoelectric properties of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si3.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Ti</mml:mtext></mml:mrow><mml:mrow prepared by CS2 sulfurization. Acta Materialia, 2012, 60, 7232-7240.</mml:mrow </mml:msub></mml:mrow></mml:math>	7.9 ₩>≺mml:ı	nn≶3
12	Enhanced average thermoelectric figure of merit of n-type PbTe _{1â^'x} I _x –MgTe. Journal of Materials Chemistry C, 2015, 3, 10401-10408.	5.5	61
13	Thermoelectric properties of semiconductorlike intermetallic compounds TMGa3 (TM=Fe, Ru, and Os). Journal of Applied Physics, 2004, 96, 5644-5648.	2.5	60
14	Structural phase transition accompanied by metal-insulator transition in PrRu4P12. Journal of Physics Condensed Matter, 2001, 13, L45-L48.	1.8	58
15	High Thermoelectric Power Factor of Highâ€Mobility 2D Electron Gas. Advanced Science, 2018, 5, 1700696.	11.2	51
16	Effect of processing parameters on thermoelectric properties of p-type (Bi2Te3)0.25(Sb2Te3)0.75 prepared via BMA–HP method. Materials Chemistry and Physics, 2001, 70, 90-94.	4.0	50
17	Enhancement in the thermoelectric performance of colusites Cu ₂₆ A ₂ E ₆ S ₃₂ (A = Nb, Ta; E = Sn, Ge) using E-site non-stoichiometry. Journal of Materials Chemistry C, 2017, 5, 4174-4184.	5.5	49
18	Thermoelectric properties of Al1â^'xInxN and Al1â^'yâ^'zGayInzN prepared by radio-frequency sputtering: Toward a thermoelectric power device. Applied Physics Letters, 2003, 82, 2065-2067.	3.3	44

#	Article	IF	CITATIONS
19	Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance. Journal of Alloys and Compounds, 2004, 384, 254-260.	5.5	42
20	Thermoelectric devices using InN and Al1â^'xInxN thin films prepared by reactive radio-frequency sputtering. Applied Physics Letters, 2004, 84, 5344-5346.	3.3	41
21	High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials. Nano Energy, 2019, 66, 104193.	16.0	40
22	Preparation and Thermoelectric Properties of Chevrel-Phase Cu <i>_x</i> Mo ₆ S ₈ (2.0≤ <i>x</i> ≤4.0). Materials Transactions, 2009, 50, 2129-2133.	1.2	39
23	Microstructural Control and Thermoelectric Properties of Misfit Layered Sulfides (LaS) _{1+<i>m</i>} TS ₂ (T = Cr, Nb): The Natural Superlattice Systems. Chemistry of Materials, 2014, 26, 2684-2692.	6.7	39
24	Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module. Journal of Electronic Materials, 2015, 44, 3637-3645.	2.2	38
25	Thermal diffusivity and thermoelectric figure of merit of Al1â^'xInxN prepared by reactive radio-frequency sputtering. Applied Physics Letters, 2003, 83, 5398-5400.	3.3	37
26	Solid-State Synthesis of Thermoelectric Materials in Mg–Si–Ge System. Materials Transactions, 2005, 46, 1490-1496.	1.2	37
27	Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance. II. Mechanical properties. Journal of Alloys and Compounds, 2005, 388, 118-121.	5.5	36
28	Power Generation Evaluated on a Bismuth Telluride Unicouple Module. Journal of Electronic Materials, 2015, 44, 1785-1790.	2.2	35
29	Measurement and simulation of thermoelectric efficiency for single leg. Review of Scientific Instruments, 2015, 86, 045103.	1.3	33
30	Power generation from the Cu ₂₆ Nb ₂ Ge ₆ S ₃₂ -based single thermoelectric element with Au diffusion barrier. Journal of Materials Chemistry C, 2019, 7, 5184-5192.	5.5	33
31	Effects of interface layer on thermoelectric properties of a pn junction prepared via the BMA-HP method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 85, 34-37.	3.5	31
32	Thermoelectric Properties of Bi ₂ Te ₃ -Based Thin Films with Fine Grains Fabricated by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2009, 48, 085506.	1.5	31
33	Performance of Skutterudite-Based Modules. Journal of Electronic Materials, 2017, 46, 2640-2644.	2.2	31
34	Thermoelectric properties of SiC thick films deposited by thermal plasma physical vapor deposition. Science and Technology of Advanced Materials, 2003, 4, 167-172.	6.1	30
35	Perovskite solar cell-thermoelectric tandem system with a high efficiency of over 23%. Materials Today Energy, 2019, 12, 363-370.	4.7	30
36	Peltier Effect in Sub-micron-Size Metallic Junctions. Japanese Journal of Applied Physics, 2005, 44, L12-L14.	1.5	28

#	Article	IF	CITATIONS
37	Thermoelectric properties and thermoelectric devices of free-standing GaN and epitaxial GaN layer. Thin Solid Films, 2007, 515, 4501-4504.	1.8	27
38	Thermoelectric Inorganic SiGe Film Synthesized on Flexible Plastic Substrate. ACS Applied Energy Materials, 0, , .	5.1	26
39	An Integrated Approach to Thermoelectrics: Combining Phonon Dynamics, Nanoengineering, Novel Materials Development, Module Fabrication, and Metrology. Advanced Energy Materials, 2019, 9, 1801304.	19.5	26
40	Peltier effect in metallic junctions with CPP structure. IEEE Transactions on Magnetics, 2005, 41, 2571-2573.	2.1	22
41	Giant Peltier Effect in a Submicron-Sized Cu–Ni/Au Junction with Nanometer-Scale Phase Separation. Applied Physics Express, 2010, 3, 065204.	2.4	22
42	Thermoelectric Properties of As-Based Zintl Compounds Ba _{1–<i>x</i>} K _{<i>x</i>} Zn ₂ As ₂ . Inorganic Chemistry, 2017, 56, 3709-3712.	4.0	22
43	Experimental Investigation of the Effect of Operating Pressure on the Performance of SOFC and SOEC. ECS Transactions, 2013, 57, 699-708.	0.5	21
44	Thermoelectric properties of and devices based on free-standing GaN. Applied Physics Letters, 2005, 86, 252102.	3.3	19
45	Roll-type thermoelectric devices with InN thin films. Applied Physics Letters, 2005, 87, 243508.	3.3	19
46	Surface cleaning of germanium nanodot ionization substrate for surfaceâ€assisted laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 603-610.	1.5	19
47	Evaluation of the Thermoelectric Module Consisting of W-Doped Heusler Fe2VAl Alloy. Journal of Electronic Materials, 2014, 43, 1922-1926.	2.2	19
48	Thermoelectric properties of (Ba,K)Cd ₂ As ₂ crystallized in the CaAl ₂ Si ₂ -type structure. Dalton Transactions, 2018, 47, 16205-16210.	3.3	19
49	Thermoelectric Properties of Chevrel-Phase Sulfides M x Mo6S8 (M: Cr, Mn, Fe, Ni). Journal of Electronic Materials, 2010, 39, 2117-2121.	2.2	18
50	Theoretical modeling of electrical resistivity and Seebeck coefficient of bismuth nanowires by considering carrier mean free path limitation. Journal of Applied Physics, 2017, 121, .	2.5	18
51	Extrinsic Origin of High-Temperature Ferromagnetism in CaB6. Journal of the Physical Society of Japan, 2003, 72, 2097-2102.	1.6	17
52	Laser Desorption/Ionization on Porous Silicon Mass Spectrometry for Accurately Determining the Molecular Weight Distribution of Polymers Evaluated Using a Certified Polystyrene Standard. Analytical Sciences, 2005, 21, 485-490.	1.6	16
53	Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance. Journal of Alloys and Compounds, 2005, 392, 295-299.	5.5	16
54	Thermoelectric properties and a device based on n-InSb and p-InAs. Applied Physics Letters, 2007, 90, 052107.	3.3	16

Ατςυση Υλαματία

#	Article	IF	CITATIONS
55	Crystal Structure and Thermoelectric Properties of ReSi _{1.75} Based Silicides. Materials Science Forum, 2003, 426-432, 1777-1782.	0.3	15
56	Effect of Ti Substitution on Thermoelectric Properties of W-Doped Heusler Fe2VAl Alloy. Journal of Electronic Materials, 2013, 42, 1801-1806.	2.2	15
57	Synthesis of Al-doped Mg2Si1â^xSnx compound using magnesium alloy for thermoelectric application. Journal of Alloys and Compounds, 2015, 649, 1060-1065.	5.5	15
58	Magnetic-Field Dependence of Thermoelectric Properties of Sintered Bi90Sb10 Alloy. Journal of Electronic Materials, 2016, 45, 1875-1885.	2.2	15
59	Experimental and Theoretical Evaluations of the Galvanomagnetic Effect in an Individual Bismuth Nanowire. Nano Letters, 2017, 17, 110-119.	9.1	15
60	Peltier cooling in current-perpendicular-to-plane metallic junctions. Journal of Applied Physics, 2006, 99, 08H706.	2.5	14
61	Thermal properties and thermoelectric microdevices with InN thin films. Microelectronics Journal, 2007, 38, 667-671.	2.0	14
62	High tunneling magnetoresistance in Fe/GaOx/Ga1â^'xMnxAs with metal/insulator/semiconductor structure. Applied Physics Letters, 2008, 93, .	3.3	14
63	Superconducting and structural properties of nearly carbonate-free HgBa2CuO4+δ. Physica C: Superconductivity and Its Applications, 2001, 351, 329-340.	1.2	13
64	Thermoelectric properties of InSb and Ga0.03In0.97Sb thin films grown by metalorganic vapor-phase epitaxy. Applied Physics Letters, 2005, 86, 153504.	3.3	13
65	Solid State Synthesis of Ternary Thermoelectric Magnesium Alloy, Mg ₂ Si _{1−<i>x</i>} Sn <i>_x</i> . Materials Transactions, 2006, 47, 1058-1065.	1.2	13
66	Thermoelectric Properties of (Ba,K)Zn ₂ As ₂ Crystallized in the ThCr ₂ Si ₂ -type Structure. Inorganic Chemistry, 2020, 59, 5828-5834.	4.0	13
67	Combinatorial screening of ternary NiO–Mn2O3–CuO composition spreads. Journal of Applied Physics, 2005, 98, 043710.	2.5	12
68	Development of Anode Off-Gas Recycle Blowers for High Efficiency SOFC Systems. ECS Transactions, 2013, 57, 443-450.	0.5	12
69	Prototype fabrication and performance evaluation of a thermoelectric module operating with the Nernst effect. IScience, 2021, 24, 101967.	4.1	12
70	Soft Laser Desorption/Ionization Mass Spectrometry Using a Pyroelectric Ceramic Plate. Chemistry Letters, 2005, 34, 1178-1179.	1.3	11
71	Effect of impurity oxygen concentration on the thermoelectric properties of hot-pressed Zn4Sb3. Journal of Alloys and Compounds, 2006, 417, 259-263.	5.5	11
72	Characterization of half-Heusler unicouple for thermoelectric conversion. Journal of Applied Physics, 2015, 117, .	2.5	11

#	Article	IF	CITATIONS
73	Electronic densities of states of several intermetallic compounds with large coordination numbers calculated within the framework of band theory. Journal of Alloys and Compounds, 2005, 389, 220-228.	5.5	10
74	Peltier effect in multilayered nanopillars under high density charge current. Journal Physics D: Applied Physics, 2006, 39, 5267-5271.	2.8	10
75	A p-n Sandwich Structure Peltier Device with a Sharp Microtip for Cooling/Heating Micro-objects. Electrochemical and Solid-State Letters, 2008, 11, H103.	2.2	9
76	Studies on Effective Utilization of SOFC Exhaust Heat Using Thermoelectric Power Generation Technology. Journal of Electronic Materials, 2013, 42, 2306-2313.	2.2	8
77	Durability of Silicide-Based Thermoelectric Modules at High Temperatures in Air. Journal of Electronic Materials, 2015, 44, 2946-2952.	2.2	8
78	Electrical current dependence of the ionic conduction in Zn ₄ Sb ₃ . Applied Physics Express, 2017, 10, 095801.	2.4	8
79	Energetic consideration of compounds at Mg ₂ Si–Ni electrode interlayer produced by spark-plasma sintering. Japanese Journal of Applied Physics, 2017, 56, 05DC03.	1.5	8
80	Fabrication of a Nanoscale Electrical Contact on a Bismuth Nanowire Encapsulated in a Quartz Template by Using FIB-SEM. Journal of Electronic Materials, 2017, 46, 2782-2789.	2.2	8
81	Enhancement of figure of merit for Nernst effect in Bi77Sb23 alloy by Te-doping. Applied Physics Letters, 2020, 117, .	3.3	8
82	Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing. Applied Energy, 2020, 260, 114443.	10.1	8
83	Crystal structure and thermoelectric properties of ReSi _{1.75} silicide. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	7
84	Analysis of Polymer Additives by DIOS-MS. Journal of the Mass Spectrometry Society of Japan, 2005, 53, 247-256.	0.1	7
85	Solid-State Synthesis of Mg ₂ Si _{1-x} Y _x (Y=Ge and Sn) Thermoelectric Materials via Bulk Mechanical Alloying. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 347-350.	0.1	7
86	Changes of the band structure of Mg ₂ Si induced by interstitial doping with nonmetallic elements. Japanese Journal of Applied Physics, 2020, 59, SFFC04.	1.5	7
87	Interlaboratory Testing for Highâ€Temperature Power Generation Characteristics of a Niâ€Based Alloy Thermoelectric Module. Energy Technology, 2020, 8, 2000557.	3.8	7
88	Process Controllability of Thermoelectric Properties of (Bi2Te3)0.2(Sb2Te3)0.8 on the Root of Bulk Mechanical Alloying Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1998, 45, 958-961.	0.2	6
89	Thermoelectric Properties of Electrically Conductive III-Oxynitrides of Al1-xInxOsNt and InOsNt Prepared by Radio-Frequency Reactive Sputtering: Toward a Thermopower Device. Japanese Journal of Applied Physics, 2002, 41, L1354-L1356.	1.5	6
90	Combinatorial Fabrication and Characterization of Ternary La2O3–Mn2O3–Co3O4Composition Spreads. Japanese Journal of Applied Physics, 2005, 44, 6164-6166.	1.5	6

#	Article	IF	CITATIONS
91	Spin-dependent density of states in Ga1â^'xMnxAs probed by tunneling spectroscopy. Applied Physics Letters, 2008, 92, 192512.	3.3	6
92	P-type sp3-bonded BN/n-type Si heterodiode solar cell fabricated by laser–plasma synchronous CVD method. Journal Physics D: Applied Physics, 2009, 42, 225107.	2.8	6
93	Microgenerator Using BiSbTe-Pt Thermopile and Pt-Al2O3 Ceramic Combustor. Journal of Electronic Materials, 2011, 40, 817-822.	2.2	6
94	Thermoelectric Module of SiGe Bulk Alloys Forming pâ€n Junction at the Hot Side. Advanced Engineering Materials, 2022, 24, .	3.5	6
95	High-Throughput Screening of Thermoelectric Materials; Application of Thermal Probe Method to Composition-Spread Samples. Materials Research Society Symposia Proceedings, 2003, 804, 79.	0.1	5
96	Thermoelectric Properties of Hot-Pressed GaN and InN. Materials Research Society Symposia Proceedings, 2003, 793, 310.	0.1	5
97	Thermoelectric Properties of Selenospinel Cu6Fe4Sn12Se32. Journal of Electronic Materials, 2012, 41, 1130-1133.	2.2	5
98	AC/DC Transfer Technique for Measuring Thomson Coefficient: Toward Thermoelectric Metrology. IEEE Transactions on Instrumentation and Measurement, 2015, , 1-1.	4.7	5
99	Efficacies of dopants in thermoelectric BiOCuSe. Materials Chemistry and Physics, 2016, 177, 73-78.	4.0	5
100	Large thermoelectric figure of merit value of undoped polycrystalline ruthenium sesquisilicide. AlP Conference Proceedings, 1994, , .	0.4	4
101	Tunneling spectroscopy in Feâ^•ZnSeâ^•Ga1â^'xMnxAs magnetic tunnel diodes. Journal of Applied Physics, 2008, 103, 07D127.	2.5	4
102	Improvement of SOFC System Efficiency by Incorporating Thermoelectric Power Generation Heat Exchanger. ECS Transactions, 2013, 57, 2627-2636.	0.5	4
103	Exploratory Study of Substitutional Elements in Mg ₂ Si for Inducing State of Negative Chemical Pressure. Materials Transactions, 2018, 59, 1417-1422.	1.2	4
104	Computational analysis of Peltier current leads. , 0, , .		3
105	Thermoelectric and thermal properties of AlInN thin films prepared by reactive radio-frequency sputtering. Physica Status Solidi A, 2004, 201, 225-228.	1.7	3
106	Experimental and Theoretical Evaluation on Thermoelectricity for SPS-Joined p-n Module in Bi–Te System. Materials Transactions, 2005, 46, 1506-1513.	1.2	3
107	Combinatorial Approach for Thermoelectric Materials through Bulk Composition-Spreads and Diffusion Multiples. Materials Research Society Symposia Proceedings, 2007, 1024, 1.	0.1	3
108	Preparation of Single-Phase Pb-Filled Chevrel-Phase Sulfide and Its Thermoelectric Properties. Materials Transactions, 2011, 52, 1535-1538.	1.2	3

#	Article	IF	CITATIONS
109	<i>(Invited)</i> Peltier Effect of Silicon for Cooling 4H-SiC-Based Power Devices. ECS Transactions, 2017, 80, 77-85.	O.5	3
110	Characterization of thermoelectric conversion for a stacked leg with parasitic heat radiation. Measurement: Journal of the International Measurement Confederation, 2021, 171, 108846.	5.0	3
111	Shear Extrusion Method of Bi-Te Based Thermoelectric Material Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2000, 47, 1189-1193.	0.2	2
112	La doping effect in thermoelectric properties of skutterudite compound CeRu/sub 4/P/sub 12/. , 0, , .		2
113	Electrical screening of ternary NiO–Mn2O3–Co3O4 composition spreads. Applied Surface Science, 2006, 252, 3828-3832.	6.1	2
114	Optimization of Thermoelectric Properties of Ni-Cu based Alloy through Combinatorial Approach. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	2
115	Synthetic Copper-based Sulfide Minerals as Advanced Thermoelectric Materials and the Modularization for Power Generation. Materia Japan, 2015, 54, 335-338.	0.1	2
116	Si Nanopillar/SiGe Composite Structure for Thermally Managed Nano-devices. , 2021, , .		2
117	Management of Phonon Transport in Lateral Direction for Gap-Controlled Si Nanopillar/SiGe Interlayer Composite Materials. IEEE Open Journal of Nanotechnology, 2021, 2, 148-152.	2.0	2
118	Thermoelectric figure of merit of silicide two-dimensional quantum wells. , 0, , .		1
119	Development of BI-SB-TE Ternary Alloy with Compositionally Graded Structure. Materials Research Society Symposia Proceedings, 1997, 478, 115.	0.1	1
120	Thermoelectric properties of multilayered p-type SiGe thin films. , 0, , .		1
121	Thermoelectric properties of p-type Bi-Sb-Te based material prepared by PIES method with conventional ball milling process. , 0, , .		1
122	Thermoelectric properties of Si/sub 0.8/Ge/sub 0.2//Si multilayers. , 0, , .		1
123	Two dimensional quantum net of heavily doped porous silicon. , 0, , .		1
124	Thermal Plasma Physical Vapor Deposition of Nanostructured SiC Coatings. Materials Research Society Symposia Proceedings, 2002, 742, 2191.	0.1	1
125	Fabrication of Thermoelectric Devices Using AlInN and InON Films prepared by reactive radio-frequency sputtering. Materials Research Society Symposia Proceedings, 2003, 798, 182.	0.1	1
126	Thermoelectric properties of Bi2Te3 based thin films fabricated by pulsed laser deposition. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	1

#	Article	IF	CITATIONS
127	Thermoelectric And Electrical Properties Of GaN And InN Single Crystals. AIP Conference Proceedings, 2007, , .	0.4	1
128	Improved Thomson Coefficient Measurements Using an AC Method. Materials Research Society Symposia Proceedings, 2014, 1642, 1.	0.1	1
129	Analysis of heat loss for measurement of Thomson coefficient using AC calorimetric method. , 2016, , .		1
130	Calculation of Seebeck Coefficients for Advanced Heat Transfer Modules. ECS Transactions, 2017, 80, 57-62.	0.5	1
131	Energetic consideration of defected rhenium disilicide, ReSi 2-x, and the electronic structure of Re 4 Si 7 (ReSi 1.75), revisited. Computational Condensed Matter, 2018, 14, 167-175.	2.1	1
132	Tunability of Mg ₂ Si Bandgap by Formation of Mg ₂ (Si, C) with an Anti-Fluorite Structure Examined by First-Principles Calculations. Materials Transactions, 2019, 60, 1873-1880.	1.2	1
133	Thermoelectric properties of NaZn4-Cu As3 crystalized in the rhombohedral structure. Journal of Solid State Chemistry, 2020, 291, 121588.	2.9	1
134	Thermoelectric figure of merit of Si-Ge multilayered thin films. , 0, , .		0
135	Synthesis of Zn/sub 4/Sb/sub 3/ compound by PIES method. , 0, , .		Ο
136	Annealing effect on thermoelectric properties of Bi implanted Si thin film. , 0, , .		0
137	Thermoelectric properties of III-nitrides and III-oxynitrides prepared by reactive rf-sputtering: targetting a thermopower device. Materials Research Society Symposia Proceedings, 2002, 743, L6.11.1.	0.1	Ο
138	Thermoelectric properties of Al1â^'xInxN and InOsNtprepared by reactive radio frequency sputtering. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2886-2889.	0.8	0
139	Thermal and thermoelectric properties of III-nitride and III-oxynitride films. , 0, , .		0
140	Consideration on the applicability of intermetallic compounds with a large coordination number as thermoelectric materials on the basis of the calculated electronic densities of states. , 0, , .		0
141	Thermoelectric Properties of NaZn13-type Intermetallic Compounds. Materials Research Society Symposia Proceedings, 2003, 793, 304.	0.1	Ο
142	Thermal and thermoelectric properties of III-nitride and III-oxynitride films prepared by reactive RF sputtering. Materials Research Society Symposia Proceedings, 2003, 793, 365.	0.1	0
143	Thermoelectric Properties of Semiconducting Intermetallic Compounds: FeGa3and RuGa3. Materials Research Society Symposia Proceedings, 2003, 793, 359.	0.1	0
144	Optimization of Hot-Press Conditions of Zn4Sb3 for High Thermoelectric Performance. Part 2. Mechanical Properties ChemInform, 2005, 36, no.	0.0	0

Ατςυση Υλαματίο

#	Article	IF	CITATIONS
145	Peltier effect in sub-micron-sized metallic junctions. , 2006, , .		0
146	Thermoelectric Power Devices Based on InN Thin Films. Materials Research Society Symposia Proceedings, 2006, 973, 1.	0.1	0
147	Thermoelectric Material Design in Pseudo Binary Systems of Mg ₂ Si – Mg ₂ Ge – Mg ₂ Sn on the Powder Metallurgy Route. Materials Science Forum, 2007, 534-536, 1553-1556.	0.3	0
148	Thermoelectric Properties Of And Device Physics Based On InSb Semiconductors. AIP Conference Proceedings, 2007, , .	0.4	0
149	Application of DME to an SOFC System Designed for LPC. ECS Transactions, 2013, 51, 137-140.	0.5	Ο
150	High Precision Evaluation of Gas Composition and Current Efficiency for High Temperature H2O and CO2 Electrolysis. ECS Transactions, 2013, 50, 81-86.	0.5	0
151	Development of stacking type thermoelectric power generation unit for potential waste heat recovery applications. Journal of Physics: Conference Series, 2018, 1052, 012136.	0.4	0
152	Observation of Interface between Thermoelectric Material Zn ₄ Sb ₃ and Electrodes by Resistance Scanning and Seebeck Coefficient Mapping Techniques. Materials Transactions, 2018, 59, 1035-1040.	1.2	0
153	Thermoelectrics: An Integrated Approach to Thermoelectrics: Combining Phonon Dynamics, Nanoengineering, Novel Materials Development, Module Fabrication, and Metrology (Adv. Energy) Tj ETQq1 1 0.	78 19. 54 rg	gBTo/Overlock
154	Power generation characteristics of thermoelectric conversion module using type-II (K,Ba) ₂₄ (Ga,Sn) ₁₃₆ and type-VIII Ba ₈ Ga ₁₆ (Sn,Ge) ₃₀ clathrates. Applied Physics Express, 2020, 13, 011001.	2.4	0
155	Thermoelectric Properties of Ce Based Filled Skutterudite Phosphides. IEEJ Transactions on Fundamentals and Materials, 2004, 124, 617-623.	0.2	0
156	Influence of Cu-Ni thickness on Peltier effect in submicron-sized Cu-Ni/Ru junctions. Journal of the Magnetics Society of Japan, 2011, 35, 264-267.	0.9	0
157	Development of Functionally Graded Thermoelectric Materials by PIES Method. , 1997, , 533-538.		0
158	Thermoelectric Properties of Si-Ge Multiple Quantum Wells. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 1386-1392.	0.4	0