
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6802553/publications.pdf Version: 2024-02-01

SHENC-CE TAO

#	Article	IF	CITATIONS
1	Anti-SARS-CoV-2 IgG responses are powerful predicting signatures for the outcome of COVID-19 patients. Journal of Advanced Research, 2022, 36, 133-145.	9.5	6
2	Quantitative plasma proteome profiling of COVID-19 patients with mild and moderate symptoms. EBioMedicine, 2022, 75, 103773.	6.1	0
3	Landscape of the RBD-specific IgG, IgM, and IgA responses triggered by the inactivated virus vaccine against the Omicron variant. Cell Discovery, 2022, 8, 15.	6.7	14
4	SARS-CoV-2 proteome microarray for COVID-19 patient sera profiling. STAR Protocols, 2022, 3, 101238.	1.2	1
5	Antibody dynamics to SARSâ€CoVâ€2 in asymptomatic COVIDâ€19 infections. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 551-561.	5.7	107
6	Antibody Binding Epitope Mapping (AbMap) of Hundred Antibodies in a Single Run. Molecular and Cellular Proteomics, 2021, 20, 100059.	3.8	30
7	Systematic evaluation of IgG responses to SARS-CoV-2 spike protein-derived peptides for monitoring COVID-19 patients. Cellular and Molecular Immunology, 2021, 18, 621-631.	10.5	43
8	A graphene oxide coated tapered microfiber acting as a super-sensor for rapid detection of SARS-CoV-2. Lab on A Chip, 2021, 21, 2398-2406.	6.0	25
9	The binding epitope of sintilimab on PD-1 revealed by AbMap. Acta Biochimica Et Biophysica Sinica, 2021, 53, 628-635.	2.0	5
10	Phage display: an ideal platform for coupling protein to nucleic acid. Acta Biochimica Et Biophysica Sinica, 2021, 53, 389-399.	2.0	6
11	Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1,051 COVID-19 patients. Cell Reports, 2021, 34, 108915.	6.4	127
12	Mycobacterium tuberculosis Thymidylyltransferase RmlA Is Negatively Regulated by Ser/Thr Protein Kinase PknB. Frontiers in Microbiology, 2021, 12, 643951.	3.5	8
13	Systematic profiling of SARS-CoV-2-specific IgG epitopes at amino acid resolution. Cellular and Molecular Immunology, 2021, 18, 1067-1069.	10.5	14
14	Antibody landscape against SARS-CoV-2 reveals significant differences between non-structural/accessory and structural proteins. Cell Reports, 2021, 36, 109391.	6.4	32
15	Systematic profiling of SARS-CoV-2-specific IgG responses elicited by an inactivated virus vaccine identifies peptides and proteins for predicting vaccination efficacy. Cell Discovery, 2021, 7, 67.	6.7	29
16	SARS-CoV-2 spike linear epitope scanning via a peptide microarray through sera profiling. STAR Protocols, 2021, 2, 100707.	1.2	4
17	Nsp2 has the potential to be a drug target revealed by global identification of SARS-CoV-2 Nsp2-interacting proteins. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1134-1141.	2.0	14
18	Assessment and comparison of recombinant proteins from different sources for the detection of SARS-CoV-2 infection by using protein microarray. Acta Biochimica Et Biophysica Sinica, 2021, 53, 262-264.	2.0	2

#	Article	IF	CITATIONS
19	Advances and Utility of the Human Plasma Proteome. Journal of Proteome Research, 2021, 20, 5241-5263.	3.7	86
20	Epitope Analysis of Anti-SARS-CoV-2 Neutralizing Antibodies. Current Medical Science, 2021, 41, 1065.	1.8	3
21	COVID-ONE-hi: The One-stop Database for COVID-19-specific Humoral Immunity and Clinical Parameters. Genomics, Proteomics and Bioinformatics, 2021, 19, 669-678.	6.9	8
22	Database Development for Antibody Arrays. Methods in Molecular Biology, 2021, 2237, 257-261.	0.9	0
23	EASINESS: E. coli Assisted Speedy afflNity-maturation Evolution SyStem. Frontiers in Immunology, 2021, 12, 747267.	4.8	0
24	Multiplex and visual detection of African Swine Fever Virus (ASFV) based on Hive-Chip and direct loop-mediated isothermal amplification. Analytica Chimica Acta, 2020, 1140, 30-40.	5.4	23
25	SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nature Communications, 2020, 11, 3581.	12.8	251
26	Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development. Frontiers in Cell and Developmental Biology, 2020, 8, 555.	3.7	4
27	SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cellular and Molecular Immunology, 2020, 17, 998-1000.	10.5	280
28	Linear epitopes of SARS-CoV-2 spike protein elicit neutralizing antibodies in COVID-19 patients. Cellular and Molecular Immunology, 2020, 17, 1095-1097.	10.5	168
29	RIG-I regulates myeloid differentiation by promoting TRIM25-mediated ISGylation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14395-14404.	7.1	25
30	Sketching the Glycan Hallmark of Intact Cells Using Lectin Microarray. ACS Symposium Series, 2020, , 119-126.	0.5	0
31	An array of 60,000 antibodies for proteome-scale antibody generation and target discovery. Science Advances, 2020, 6, eaax2271.	10.3	22
32	Longitudinal serum autoantibody repertoire profiling identifies surgery-associated biomarkers in lung adenocarcinoma. EBioMedicine, 2020, 53, 102674.	6.1	30
33	Global discovery the PstP interactions using Mtb proteome microarray and revealing novel connections with EthR. Journal of Proteomics, 2020, 215, 103650.	2.4	3
34	Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368, 1499-1504.	12.6	950
35	Fatty acylCoA synthetase FadD13 regulates proinflammatory cytokine secretion dependent on the NFâ€ՔB signalling pathway by binding to eEF1A1. Cellular Microbiology, 2019, 21, e13090.	2.1	11
36	ldentification of Serum Biomarkers for Systemic Lupus Erythematosus Using a Library of Phage Displayed Random Peptides and Deep Sequencing. Molecular and Cellular Proteomics, 2019, 18, 1851-1863.	3.8	13

#	Article	IF	CITATIONS
37	Proteome microarray technology and application: higher, wider, and deeper. Expert Review of Proteomics, 2019, 16, 815-827.	3.0	19
38	RIBOi: a database for ribosome-interacting proteins. Acta Biochimica Et Biophysica Sinica, 2019, 51, 441-443.	2.0	1
39	165â€Identification of serum biomarkers for systemic lupus erythematosus using a library of phage displayed random peptides and deep sequencing. , 2019, , .		0
40	Interplay between the bacterial protein deacetylase CobB and the second messenger câ€di― <scp>GMP</scp> . EMBO Journal, 2019, 38, e100948.	7.8	28
41	Identification of Serine 119 as an Effective Inhibitor Binding Site of M. tuberculosis Ubiquitin-like Protein Ligase PafA Using Purified Proteins and M. smegmatis. EBioMedicine, 2018, 30, 225-236.	6.1	9
42	Comparative analysis of human sperm glycocalyx from different freezability ejaculates by lectin microarray and identification of ABA as sperm freezability biomarker. Clinical Proteomics, 2018, 15, 19.	2.1	9
43	Global Profiling of PknG Interactions Using a Human Proteome Microarray Reveals Novel Connections with CypA. Proteomics, 2018, 18, e1800265.	2.2	11
44	Current Technologies for Complex Glycoproteomics and Their Applications to Biology/Disease-Driven Glycoproteomics. Journal of Proteome Research, 2018, 17, 4097-4112.	3.7	60
45	Current applications of antibody microarrays. Clinical Proteomics, 2018, 15, 7.	2.1	75
46	Multiplex sample-to-answer detection of bacteria using a pipette-actuated capillary array comb with integrated DNA extraction, isothermal amplification, and smartphone detection. Lab on A Chip, 2018, 18, 2854-2864.	6.0	37
47	Cell Lysate Microarray for Mapping the Network of Genetic Regulators for Histone Marks. Molecular and Cellular Proteomics, 2018, 17, 1720-1736.	3.8	1
48	Visual detection of multiple genetically modified organisms in a capillary array. Lab on A Chip, 2017, 17, 521-529.	6.0	21
49	Systematic identification of the protein substrates of UDPâ€GalNAc:polypeptide Nâ€acetylgalactosaminyltransferaseâ€₹1/T2/T3 using a human proteome microarray. Proteomics, 2017, 17, 1600485.	2.2	10
50	The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis*. Molecular and Cellular Proteomics, 2017, 16, 1491-1506.	3.8	39
51	Rapid Production of Virus Protein Microarray Using Protein Microarray Fabrication through Gene Synthesis (PAGES). Molecular and Cellular Proteomics, 2017, 16, 288-299.	3.8	8
52	Systematic Identification of Mycobacterium tuberculosis Effectors Reveals that BfrB Suppresses Innate Immunity. Molecular and Cellular Proteomics, 2017, 16, 2243-2253.	3.8	18
53	Toward the development of magnetic tweezers for high-throughput measurement of protein–protein interactions. Acta Biochimica Et Biophysica Sinica, 2017, 49, 468-470.	2.0	0
54	Cyclic di-GMP regulates Mycobacterium tuberculosis resistance to ethionamide. Scientific Reports, 2017, 7, 5860.	3.3	25

#	Article	IF	CITATIONS
55	Visual Detection of Multiple Nucleic Acids in a Capillary Array. Journal of Visualized Experiments, 2017, , .	0.3	2
56	Proteomic identification of the oncoprotein STAT3 as a target of a novel Skp1 inhibitor. Oncotarget, 2017, 8, 2681-2693.	1.8	22
57	Effects of Cryopreservation on Human Sperm Glycocalyx. Reproductive and Developmental Medicine, 2017, 1, 233-238.	0.5	10
58	A visual multiplex PCR microchip with easy sample loading. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2017, 39, 525-534.	0.2	2
59	A Human Lectin Microarray for Sperm Surface Glycosylation Analysis. Molecular and Cellular Proteomics, 2016, 15, 2839-2851.	3.8	22
60	PMD: A Resource for Archiving and Analyzing Protein Microarray data. Scientific Reports, 2016, 6, 19956.	3.3	11
61	Global Profiling of Protein Lysine Malonylation in <i>Escherichia coli</i> Reveals Its Role in Energy Metabolism. Journal of Proteome Research, 2016, 15, 2060-2071.	3.7	63
62	Construction of a metabolomics profile of arsenic trioxide effect in gastric carcinoma cell line SGC7901. Acta Biochimica Et Biophysica Sinica, 2016, 48, 474-481.	2.0	15
63	Lectin binding of human sperm associates with DEFB126 mutation and serves as a potential biomarker for subfertility. Scientific Reports, 2016, 6, 20249.	3.3	25
64	Characterization of Protein Lysine Propionylation in <i>Escherichia coli</i> : Global Profiling, Dynamic Change, and Enzymatic Regulation. Journal of Proteome Research, 2016, 15, 4696-4708.	3.7	50
65	Fluorescent Protein Nanowire-Mediated Protein Microarrays for Multiplexed and Highly Sensitive Pathogen Detection. ACS Applied Materials & Interfaces, 2016, 8, 17472-17477.	8.0	24
66	Identification of Serum Biomarkers for Gastric Cancer Diagnosis Using a Human Proteome Microarray. Molecular and Cellular Proteomics, 2016, 15, 614-623.	3.8	82
67	Discovering cancer biomarkers from clinical samples by protein microarrays. Proteomics - Clinical Applications, 2015, 9, 98-110.	1.6	22
68	Lectin RCA-I specifically binds to metastasis-associated cell surface glycans in triple-negative breast cancer. Breast Cancer Research, 2015, 17, 36.	5.0	48
69	Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle, 2015, 14, 761-771.	2.6	75
70	Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15084-15089.	7.1	126
71	Skp1 in lung cancer: clinical significance and therapeutic efficacy of its small molecule inhibitors. Oncotarget, 2015, 6, 34953-34967.	1.8	53
72	YcgC represents a new protein deacetylase family in prokaryotes. ELife, 2015, 4, .	6.0	52

#	Article	IF	CITATIONS
73	Mycobacterium Tuberculosis Proteome Microarray for Global Studies of Protein Function and Immunogenicity. Cell Reports, 2014, 9, 2317-2329.	6.4	77
74	Comprehensive profiling of accessible surface glycans of mammalian sperm using a lectin microarray. Clinical Proteomics, 2014, 11, 10.	2.1	32
75	Global identification of <i>O</i> â€GlcNAc transferase (OGT) interactors by a human proteome microarray and the construction of an OGT interactome. Proteomics, 2014, 14, 1020-1030.	2.2	35
76	MACRO: A Combined Microchip-PCR and Microarray System for High-Throughput Monitoring of Genetically Modified Organisms. Analytical Chemistry, 2014, 86, 1269-1276.	6.5	61
77	Global identification of CobB interactors by an <italic>Escherichia coli</italic> proteome microarray. Acta Biochimica Et Biophysica Sinica, 2014, 46, 548-555.	2.0	33
78	Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis. Talanta, 2014, 122, 246-250.	5.5	64
79	Protein Microarrays for Studies of Drug Mechanisms and Biomarker Discovery in the Era of Systems Biology. Current Pharmaceutical Design, 2014, 20, 49-55.	1.9	22
80	Bcl2-associated Athanogene 3 Interactome Analysis Reveals a New Role in Modulating Proteasome Activity. Molecular and Cellular Proteomics, 2013, 12, 2804-2819.	3.8	62
81	Reversibly acetylated lysine residues play important roles in the enzymatic activity of <i><scp>E</scp>scherichiaÂcoli <scp>N</scp></i> â€hydroxyarylamine <i><scp>O</scp></i> â€acetyltransferase. FEBS Journal, 2013, 280, 1966-1979.	4.7	28
82	Microarray partition using a recycled marker pen and neutral balsam. Acta Biochimica Et Biophysica Sinica, 2013, 45, 706-708.	2.0	0
83	Profiling Lipid–protein Interactions Using Nonquenched Fluorescent Liposomal Nanovesicles and Proteome Microarrays. Molecular and Cellular Proteomics, 2012, 11, 1177-1190.	3.8	36
84	Protein Microarray: An Ideal Platform for Systems Biology. , 2012, , 113-134.		1
85	Global Identification of Prokaryotic Glycoproteins Based on an Escherichia coli Proteome Microarray. PLoS ONE, 2012, 7, e49080.	2.5	9
86	Functional protein microarray: an ideal platform for investigating protein binding property. Frontiers in Biology, 2012, 7, 336-349.	0.7	8
87	Lectin Microarrays: A Powerful Tool for Glycan-Based Biomarker Discovery. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 711-719.	1.1	16
88	Detection and Verification of Glycosylation Patterns of Glycoproteins from Clinical Specimens Using Lectin Microarrays and Lectin-Based Immunosorbent Assays. Analytical Chemistry, 2011, 83, 8509-8516.	6.5	71
89	Highâ€Throughput Lectin Microarrayâ€Based Analysis of Live Cell Surface Glycosylation. Current Protocols in Protein Science, 2011, 63, Unit12.9.	2.8	6
90	Protein microarrays for systems biology. Acta Biochimica Et Biophysica Sinica, 2011, 43, 161-171.	2.0	47

#	Article	IF	CITATIONS
91	Quantitative Proteomic Analysis of Tumor Reversion in Multiple Myeloma Cells. Journal of Proteome Research, 2011, 10, 845-855.	3.7	22
92	A universal multiplex PCR strategy for 100-plex amplification using a hydrophobically patterned microarray. Lab on A Chip, 2011, 11, 3609.	6.0	21
93	Proteomic analysis of multiple myeloma: Current status and future perspectives. Proteomics - Clinical Applications, 2011, 5, 30-37.	1.6	11
94	Proteomics: addressing the challenges of multiple myeloma. Acta Biochimica Et Biophysica Sinica, 2011, 43, 89-95.	2.0	8
95	Lectin Microarray: A Powerful Tool for Glycan Related Biomarker Discovery. Combinatorial Chemistry and High Throughput Screening, 2011, , .	1.1	0
96	Unrestrictive identification of nonâ€phosphorylation PTMs in yeast kinases by MS and PTMap. Proteomics, 2010, 10, 896-903.	2.2	8
97	Quantitative Phosphoproteomics of Proteasome Inhibition in Multiple Myeloma Cells. PLoS ONE, 2010, 5, e13095.	2.5	28
98	Identification of Novel 14-3-3ζ Interacting Proteins by Quantitative Immunoprecipitation Combined with Knockdown (QUICK). Journal of Proteome Research, 2010, 9, 5848-5858.	3.7	40
99	An integrated micro-electro-fluidic and protein arraying system for parallel analysis of cell responses to controlled microenvironments. Integrative Biology (United Kingdom), 2010, 2, 416.	1.3	10
100	Global analysis of the glycoproteome in <i>Saccharomyces cerevisiae</i> reveals new roles for protein glycosylation in eukaryotes. Molecular Systems Biology, 2009, 5, 308.	7.2	79
101	Protein Acetylation Microarray Reveals that NuA4 Controls Key Metabolic Target Regulating Gluconeogenesis. Cell, 2009, 136, 1073-1084.	28.9	279
102	A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nature Methods, 2008, 5, 69-74.	19.0	121
103	Protein Arrays on Patterned Porous Gold Substrates Interrogated with Mass Spectrometry:  Detection of Peptides in Plasma. Analytical Chemistry, 2008, 80, 1448-1458.	6.5	47
104	Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology, 2008, 18, 761-769.	2.5	184
105	Functional Dissection of a HECT Ubiquitin E3 Ligase. Molecular and Cellular Proteomics, 2008, 7, 35-45.	3.8	70
106	Applications of Protein Microarray Technology. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 706-718.	1.1	67
107	Protein chip fabrication by capture of nascent polypeptides. Nature Biotechnology, 2006, 24, 1253-1254.	17.5	90
108	Sensitive Detection of SARS Coronavirus RNA by a Novel Asymmetric Multiplex Nested RT-PCR		9

Amplification Coupled With Oligonucleotide Microarray Hybridization. , 2005, 114, 59-78.

#	Article	IF	CITATIONS
109	The design and application of DNA chips for early detection of SARS-CoV from clinical samples. Journal of Clinical Virology, 2005, 33, 123-131.	3.1	11
110	One-Tube Nested RT-PCR Enabled by Using a Plastic Film and its Application for the Rapid Detection of SARS-Virus. Biotechnology Letters, 2004, 26, 179-183.	2.2	4
111	Comparison of Different Methods for Preparing Single Stranded DNA for Oligonucleotide Microarray. Analytical Letters, 2003, 36, 2849-2863.	1.8	20
112	Blocking oligo—a novel approach for improving chip-based DNA hybridization efficiency. Molecular and Cellular Probes, 2003, 17, 197-202.	2.1	10
113	Room-Temperature Hybridization of Target DNA with Microarrays in Concentrated Solutions of Guanidine Thiocyanate. BioTechniques, 2003, 34, 1260-1262.	1.8	7
114	MULTIPLEX PCR FOR SIMULTANEOUS DETECTION OF HUMAN CARCINOMA-RELATED VIRUSES. Analytical Letters, 2002, 35, 1149-1162.	1.8	5
115	Antibody Landscape Against SARS-CoV-2 Proteome Revealed Significant Differences between Non-Structural/ Accessory Proteins and Structural Proteins. SSRN Electronic Journal, O, , .	0.4	0
116	SARS-CoV-2 Antibody Signatures for Predicting the Outcome of COVID-19. SSRN Electronic Journal, 0, , .	0.4	3
117	Linear Epitope Landscape of SARS-CoV-2 Spike Protein Constructed from 1,051 COVID-19 Patients. SSRN Electronic Journal, 0, , .	0.4	3
118	Protein Deacetylase Cobb Interplays with C-Di-Gmp. SSRN Electronic Journal, 0, , .	0.4	0
119	Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammal Oogenesis and Preimplantation Embryo Development. SSRN Electronic Journal, 0, , .	0.4	0