Shangang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6802395/publications.pdf

Version: 2024-02-01

257450 377865 35 1,846 24 34 h-index citations g-index papers 37 37 37 2679 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Response to Kunos et al. and Lotersztajn and Mallat. Journal of Clinical Investigation, 2022, 132, .	8.2	1
2	Activating Connexin43 gap junctions primes adipose tissue for therapeutic intervention. Acta Pharmaceutica Sinica B, 2022, 12, 3063-3072.	12.0	5
3	Dermal adipocytes contribute to the metabolic regulation of dermal fibroblasts. Experimental Dermatology, 2021, 30, 102-111.	2.9	18
4	Adiponectin, Leptin and Cardiovascular Disorders. Circulation Research, 2021, 128, 136-149.	4.5	158
5	Glucagon blockade restores functional \hat{l}^2 -cell mass in type 1 diabetic mice and enhances function of human islets. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
6	Pathologic HIF1 \hat{l} ± signaling drives adipose progenitor dysfunction in obesity. Cell Stem Cell, 2021, 28, 685-701.e7.	11.1	57
7	Adiponectin preserves metabolic fitness during aging. ELife, 2021, 10, .	6.0	37
8	Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metabolism, 2021, 33, 1624-1639.e9.	16.2	50
9	PKM1 Exerts Critical Roles in Cardiac Remodeling Under Pressure Overload in the Heart. Circulation, 2021, 144, 712-727.	1.6	23
10	Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nature Communications, 2021, 12, 4829.	12.8	15
11	Cannabinoid receptor 1 signaling in hepatocytes and stellate cells does not contribute to NAFLD. Journal of Clinical Investigation, $2021, 131, \ldots$	8.2	23
12	Suppressing adipocyte inflammation promotes insulin resistance in mice. Molecular Metabolism, 2020, 39, 101010.	6.5	47
13	Leptin: Less Is More. Diabetes, 2020, 69, 823-829.	0.6	66
14	Partial leptin deficiency confers resistance to diet-induced obesity in mice. Molecular Metabolism, 2020, 37, 100995.	6.5	49
15	Adipose ABHD6 regulates tolerance to cold and thermogenic programs. JCI Insight, 2020, 5, .	5.0	20
16	Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy. Cell Metabolism, 2019, 30, 706-719.e6.	16.2	179
17	Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. Journal of Clinical Investigation, 2019, 129, 5327-5342.	8.2	112
18	TLR4-Induced Local Adipose Inflammation Critically Regulates Glucose Homeostasis. Diabetes, 2018, 67, 2032-P.	0.6	2

#	Article	IF	CITATIONS
19	Rehmanniae Radix in osteoporosis: A review of traditional Chinese medicinal uses, phytochemistry, pharmacokinetics and pharmacology. Journal of Ethnopharmacology, 2017, 198, 351-362.	4.1	120
20	Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic \hat{l}^2 -cells. Journal of Biological Chemistry, 2017, 292, 7407-7422.	3.4	47
21	Hepatic GALE Regulates Whole-Body Glucose Homeostasis by Modulating <i>Tff3</i> Expression. Diabetes, 2017, 66, 2789-2799.	0.6	24
22	A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice. Diabetologia, 2016, 59, 2654-2663.	6.3	39
23	Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals. Cell Metabolism, 2016, 24, 420-433.	16.2	80
24	\hat{l}_{\pm}/\hat{l}^2 -Hydrolase Domain 6 Deletion Induces Adipose Browning and Prevents Obesity and Type 2 Diabetes. Cell Reports, 2016, 14, 2872-2888.	6.4	61
25	FoxO1 Deacetylation Decreases Fatty Acid Oxidation in \hat{I}^2 -Cells and Sustains Insulin Secretion in Diabetes. Journal of Biological Chemistry, 2016, 291, 10162-10172.	3.4	49
26	Simplified assays of lipolysis enzymes for drug discovery and specificity assessment of known inhibitors. Journal of Lipid Research, 2016, 57, 131-141.	4.2	42
27	Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic \hat{l}^2 -cells and hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E430-9.	7.1	88
28	$\hat{l}\pm\hat{l}^2$ -Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli. Molecular Metabolism, 2015, 4, 940-950.	6.5	32
29	A novel role for central <scp>ACBP</scp> / <scp>DBI</scp> as a regulator of longâ€chain fatty acid metabolism in astrocytes. Journal of Neurochemistry, 2015, 133, 253-265.	3.9	50
30	$\hat{l}\pm\hat{l}^2$ -Hydrolase Domain-6-Accessible Monoacylglycerol Controls Glucose-Stimulated Insulin Secretion. Cell Metabolism, 2014, 19, 993-1007.	16.2	125
31	Metabolic Inflexibility Impairs Insulin Secretion and Results In MODY-like Diabetes in Triple FoxO-Deficient Mice. Cell Metabolism, 2014, 20, 593-602.	16.2	86
32	Mechanisms of Fuel Surfeit Detoxification in Pancreatic \hat{l}^2 -cells. Canadian Journal of Diabetes, 2013, 37, S57-S58.	0.8	0
33	Monoacylglycerol as a Metabolic Coupling Factor in Glucose-Stimulated Insulin Secretion. Canadian Journal of Diabetes, 2013, 37, 62.	0.8	2
34	Glucolipotoxicity Alters Lipid Partitioning and Causes Mitochondrial Dysfunction, Cholesterol, and Ceramide Deposition and Reactive Oxygen Species Production in INS832/13 ß-Cells. Endocrinology, 2010, 151, 3061-3073.	2.8	81
35	Requirements of calcium fluxes and ERK kinase activation for glucose- and interleukin- $1\hat{l}^2$ -induced \hat{l}^2 -cell apoptosis. Molecular and Cellular Biochemistry, 2008, 315, 75-84.	3.1	29