
Petra Dietrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6802390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells, 2022, 11, 921.	4.1	7
2	The Cell Fate Controlling CLE40 Peptide Requires CNGCs to Trigger Highly Localized Ca2+ Transients in <i>Arabidopsis thaliana</i> Root Meristems. Plant and Cell Physiology, 2021, 62, 1290-1301.	3.1	7
3	Rapid depolarization and cytosolic calcium increase go handâ€inâ€hand in mesophyll cells' ozone response. New Phytologist, 2021, 232, 1692-1702.	7.3	3
4	Plant Cyclic Nucleotide-Gated Channels: New Insights on Their Functions and Regulation. Plant Physiology, 2020, 184, 27-38.	4.8	55
5	Durotropic Growth of Pollen Tubes. Plant Physiology, 2020, 183, 558-569.	4.8	25
6	A unified multi-kingdom Golden Gate cloning platform. Scientific Reports, 2019, 9, 10131.	3.3	45
7	Multiple cyclic nucleotideâ€gated channels coordinate calcium oscillations and polar growth of root hairs. Plant Journal, 2019, 99, 910-923.	5.7	54
8	AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nature Communications, 2018, 9, 1174.	12.8	160
9	Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2. Cellular and Molecular Life Sciences, 2018, 75, 3803-3815.	5.4	28
10	Protoplast-Esculin Assay as a New Method to Assay Plant Sucrose Transporters: Characterization of AtSUC6 and AtSUC7 Sucrose Uptake Activity in Arabidopsis Col-0 Ecotype. Frontiers in Plant Science, 2018, 9, 430.	3.6	43
11	Calmodulin as a Ca2+-Sensing Subunit of Arabidopsis Cyclic Nucleotide-Gated Channel Complexes. Plant and Cell Physiology, 2017, 58, 1208-1221.	3.1	58
12	BiFC Assay to Detect Calmodulin Binding to Plant Receptor Kinases. Methods in Molecular Biology, 2017, 1621, 141-149.	0.9	3
13	A quantitative hypermorphic CNGC allele confers ectopic calcium flux and impairs cellular development. ELife, 2017, 6, .	6.0	30
14	The function of the two-pore channel TPC1 depends on dimerization of its carboxy-terminal helix. Cellular and Molecular Life Sciences, 2016, 73, 2565-2581.	5.4	28
15	The Xanthomonas campestris pv. vesicatoria Type-3 Effector XopB Inhibits Plant Defence Responses by Interfering with ROS Production. PLoS ONE, 2016, 11, e0159107.	2.5	28
16	Kinase activity and calmodulin binding are essential for growth signaling by the phytosulfokine receptor <scp>PSKR</scp> 1. Plant Journal, 2014, 78, 192-202.	5.7	54
17	The phosphoinositide PI(3,5)P2 mediates activation of mammalian but not plant TPC proteins: functional expression of endolysosomal channels in yeast and plant cells. Cellular and Molecular Life Sciences, 2014, 71, 4275-4283.	5.4	63
18	An IQ Domain Mediates the Interaction with Calmodulin in a Plant Cyclic Nucleotide-Gated Channel. Plant and Cell Physiology, 2013, 54, 573-584.	3.1	94

PETRA DIETRICH

#	Article	IF	CITATIONS
19	An Nâ€Terminal Dileucine Motif Directs Twoâ€Pore Channels to the Tonoplast of Plant Cells. Traffic, 2012, 13, 1012-1022.	2.7	43
20	Differential contribution of EFâ€hands to the Ca ²⁺ â€dependent activation in the plant twoâ€pore channel TPC1. Plant Journal, 2011, 68, 424-432.	5.7	68
21	Novel PSI Domains in Plant and Animal H+-Inositol Symporters. Traffic, 2010, 11, 767-781.	2.7	16
22	Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biology, 2009, 9, 140.	3.6	95
23	Loss of the vacuolar cation channel, AtTPC1, does not impair Ca ²⁺ signals induced by abiotic and biotic stresses. Plant Journal, 2008, 53, 287-299.	5.7	164
24	Stringent control of cytoplasmic Ca2+ in guard cells of intact plants compared to their counterparts in epidermal strips or guard cell protoplasts. Protoplasma, 2008, 233, 61-72.	2.1	13
25	Arabidopsis INOSITOL TRANSPORTER2 Mediates H ⁺ Symport of Different Inositol Epimers and Derivatives across the Plasma Membrane. Plant Physiology, 2007, 145, 1395-1407.	4.8	68
26	Ca2+-Dependent and -Independent Abscisic Acid Activation of Plasma Membrane Anion Channels in Guard Cells of Nicotiana tabacum Â. Plant Physiology, 2007, 143, 28-37.	4.8	79
27	AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta, 2005, 222, 418-427.	3.2	156
28	Nucleotides and Mg2+ Ions Differentially Regulate K+ Channels and Non-Selective Cation Channels Present in Cells Forming the Stomatal Complex. Plant and Cell Physiology, 2005, 46, 1682-1689.	3.1	11
29	Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4203-4208.	7.1	166
30	AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15621-15626.	7.1	137
31	Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1456-1461.	7.1	155
32	Parallel recordings of photosynthetic electron transport and K+-channel activity in single guard cells. Plant Journal, 2002, 32, 623-630.	5.7	25
33	Aluminum Activates a Citrate-Permeable Anion Channel in the Aluminum-Sensitive Zone of the Maize Root Apex. A Comparison Between an Aluminum- Sensitive and an Aluminum-Resistant Cultivar. Plant Physiology, 2001, 126, 397-410.	4.8	168
34	KAT1 is not essential for stomatal opening. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2917-2921.	7.1	226
35	The role of ion channels in lightâ€dependent stomatal opening. Journal of Experimental Botany, 2001, 52, 1959-1967.	4.8	100
36	GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana , is a K+ -selective, K+ -sensing ion channel. FEBS Letters, 2000, 486, 93-98.	2.8	296

Petra Dietrich

#	Article	IF	CITATIONS
37	Histidine118 in the S2–S3 Linker Specifically Controls Activation of the KAT1 Channel Expressed in Xenopus Oocytes. Biophysical Journal, 2000, 78, 1255-1269.	0.5	27
38	Channel-mediated high-affinity K+ uptake into guard cells from Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3298-3302.	7.1	66
39	Pronounced differences between the native K + channels and KAT1 and KST1 α-subunit homomers of guard cells. Planta, 1999, 207, 370-376.	3.2	40
40	Cation sensitivity and kinetics of guard-cell potassium channels differ among species. Planta, 1998, 205, 277-287.	3.2	49
41	Anions permeate and gate GCAC1, a voltageâ€dependent guard cell anion channel. Plant Journal, 1998, 15, 479-487.	5.7	49
42	Molecular basis of plant-specific acid activation of K+ uptake channels. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4806-4810.	7.1	133
43	Plant K ⁺ Channels: Similarity and Diversity. Botanica Acta, 1996, 109, 94-101.	1.6	40
44	Interconversion of fast and slow gating modes of GCAC1, a Guard Cell Anion Channel. Planta, 1994, 195, 301.	3.2	41
45	Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration. Plant Journal, 1994, 6, 741-748.	5.7	143