Patrik Schmuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6801807/publications.pdf

Version: 2024-02-01

711 papers 57,334 citations

113 h-index 208 g-index

750 all docs

750 docs citations

750 times ranked

31237 citing authors

#	Article	IF	CITATIONS
1	TiO ₂ Nanotubes: Synthesis and Applications. Angewandte Chemie - International Edition, 2011, 50, 2904-2939.	13.8	2,752
2	TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 2007, 11, 3-18.	11.5	1,218
3	High-Aspect-Ratio TiO2Nanotubes by Anodization of Titanium. Angewandte Chemie - International Edition, 2005, 44, 2100-2102.	13.8	1,111
4	Nanosize and Vitality:  TiO2 Nanotube Diameter Directs Cell Fate. Nano Letters, 2007, 7, 1686-1691.	9.1	1,111
5	One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chemical Reviews, 2014, 114, 9385-9454.	47.7	1,045
6	Smooth Anodic TiO2 Nanotubes. Angewandte Chemie - International Edition, 2005, 44, 7463-7465.	13.8	832
7	Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chemical Communications, 2009, , 2791.	4.1	786
8	Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 2007, 3, 300-304.	10.0	766
9	Dye-Sensitized Solar Cells Based on Oriented TiO ₂ Nanotube Arrays: Transport, Trapping, and Transfer of Electrons. Journal of the American Chemical Society, 2008, 130, 13364-13372.	13.7	747
10	Self-Organized, Free-Standing TiO2Nanotube Membrane for Flow-through Photocatalytic Applications. Nano Letters, 2007, 7, 1286-1289.	9.1	689
11	Engineering biocompatible implant surfaces. Progress in Materials Science, 2013, 58, 261-326.	32.8	627
12	A Review of Photocatalysis using Selfâ€organized TiO ₂ Nanotubes and Other Ordered Oxide Nanostructures. Small, 2012, 8, 3073-3103.	10.0	606
13	TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2010, 2, 45-59.	5. 6	571
14	A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358, 1192-1197.	12.6	554
15	lon Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes. Nano Letters, 2006, 6, 1080-1082.	9.1	546
16	Photoanodes based on TiO ₂ and α-Fe ₂ O ₃ for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017, 46, 3716-3769.	38.1	535
17	Self-Organized Porous Titanium Oxide Prepared in H[sub 2]SO[sub 4]/HF Electrolytes. Electrochemical and Solid-State Letters, 2003, 6, B12.	2.2	509
18	Photocatalysis with Reduced TiO ₂ : From Black TiO ₂ to Cocatalyst-Free Hydrogen Production. ACS Catalysis, 2019, 9, 345-364.	11.2	495

#	Article	IF	CITATIONS
19	TiO ₂ Nanotube Surfaces: 15 nmâ€"An Optimal Length Scale of Surface Topography for Cell Adhesion and Differentiation. Small, 2009, 5, 666-671.	10.0	490
20	Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. Journal of Electroanalytical Chemistry, 2008, 621, 254-266.	3.8	447
21	Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochimica Acta, 2006, 52, 1258-1264.	5. 2	439
22	Black TiO ₂ Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Letters, 2014, 14, 3309-3313.	9.1	417
23	TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochemistry Communications, 2006, 8, 1321-1325.	4.7	400
24	Amphiphilic TiO ₂ Nanotube Arrays: An Actively Controllable Drug Delivery System. Journal of the American Chemical Society, 2009, 131, 4230-4232.	13.7	399
25	Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta, 2005, 50, 3679-3684.	5.2	391
26	Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications, 2005, 7, 505-509.	4.7	381
27	Titanium nanostructures for biomedical applications. Nanotechnology, 2015, 26, 062002.	2.6	379
28	Dye-sensitized anodic TiO2 nanotubes. Electrochemistry Communications, 2005, 7, 1133-1137.	4.7	369
29	Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochemistry Communications, 2008, 10, 71-75.	4.7	369
30	Doped TiO ₂ and TiO ₂ Nanotubes: Synthesis and Applications. ChemPhysChem, 2010, 11, 2698-2713.	2.1	352
31	TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today, 2013, 8, 235-264.	11.9	324
32	Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell and Tissue Research, 2010, 339, 131-153.	2.9	313
33	Bamboo-Type TiO ₂ Nanotubes: Improved Conversion Efficiency in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2008, 130, 16454-16455.	13.7	311
34	Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Applied Physics Letters, 2005, 87, 243114.	3.3	306
35	250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Physica Status Solidi - Rapid Research Letters, 2007, 1, R65-R67.	2.4	302
36	Filling of TiO ₂ Nanotubes by Selfâ€Doping and Electrodeposition. Advanced Materials, 2007, 19, 3027-3031.	21.0	290

3

#	Article	IF	CITATIONS
37	Initiation and Growth of Self-Organized TiO[sub 2] Nanotubes Anodically Formed in NH[sub 4]Fâ^•(NH[sub 4])[sub 2]SO[sub 4] Electrolytes. Journal of the Electrochemical Society, 2005, 152, B405.	2.9	284
38	Formation of self-organized niobium porous oxide on niobium. Electrochemistry Communications, 2005, 7, 97-100.	4.7	281
39	Hydroxyapatite growth on anodic TiO2 nanotubes. Journal of Biomedical Materials Research - Part A, 2006, 77A, 534-541.	4.0	268
40	Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions. Journal of Biomedical Materials Research - Part A, 2005, 75A, 928-933.	4.0	246
41	Tailoring the wettability of TiO2 nanotube layers. Electrochemistry Communications, 2005, 7, 1066-1070.	4.7	244
42	N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochemistry Communications, 2006, 8, 544-548.	4.7	244
43	Self-organized porous WO3 formed in NaF electrolytes. Electrochemistry Communications, 2005, 7, 295-298.	4.7	242
44	Morphological instability leading to formation of porous anodic oxide films. Nature Materials, 2012, 11, 162-166.	27.5	241
45	Photocatalysis with TiO ₂ Nanotubes: "Colorful―Reactivity and Designing Site-Specific Photocatalytic Centers into TiO ₂ Nanotubes. ACS Catalysis, 2017, 7, 3210-3235.	11.2	236
46	Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochemistry Communications, 2005, 7, 49-52.	4.7	233
47	From Bacon to barriers: a review on the passivity of metals and alloys. Journal of Solid State Electrochemistry, 2002, 6, 145-164.	2.5	232
48	Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals. Journal of the Electrochemical Society, 2007, 154, C472.	2.9	231
49	Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol. Electrochemistry Communications, 2005, 7, 1417-1422.	4.7	224
50	Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochemistry Communications, 2005, 7, 576-580.	4.7	223
51	TiO ₂ â^'WO ₃ Composite Nanotubes by Alloy Anodization: Growth and Enhanced Electrochromic Properties. Journal of the American Chemical Society, 2008, 130, 16154-16155.	13.7	219
52	Narrow Window in Nanoscale Dependent Activation of Endothelial Cell Growth and Differentiation on TiO ₂ Nanotube Surfaces. Nano Letters, 2009, 9, 3157-3164.	9.1	219
53	<i>In vivo</i> evaluation of anodic TiO ₂ nanotubes: An experimental study in the pig. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 165-171.	3.4	215
54	TiO2 nanotubes: H+insertion and strong electrochromic effects. Electrochemistry Communications, 2006, 8, 528-532.	4.7	210

#	Article	IF	Citations
55	Magnetically Guided Titania Nanotubes for Siteâ€6elective Photocatalysis and Drug Release. Angewandte Chemie - International Edition, 2009, 48, 969-972.	13.8	210
56	Wetting behaviour of layers of TiO2 nanotubes with different diameters. Journal of Materials Chemistry, 2005, 15, 4488.	6.7	208
57	Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta, 2007, 52, 4053-4061.	5.2	201
58	TiO2 Nanotube arrays: Elimination of disordered top layers ("nanograssâ€) for improved photoconversion efficiency in dye-sensitized solar cells. Electrochemistry Communications, 2008, 10, 1835-1838.	4.7	201
59	Vertically aligned mixed V2O5–TiO2 nanotube arrays for supercapacitor applications. Chemical Communications, 2011, 47, 7746.	4.1	199
60	Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochemistry Communications, 2007, 9, 947-952.	4.7	195
61	Growth of Aligned TiO ₂ Bambooâ€Type Nanotubes and Highly Ordered Nanolace. Angewandte Chemie - International Edition, 2008, 47, 1916-1919.	13.8	195
62	Towards ideal hexagonal selfâ€ordering of TiO ₂ nanotubes. Physica Status Solidi - Rapid Research Letters, 2007, 1, 181-183.	2.4	192
63	Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochemistry Communications, 2009, 11, 1001-1004.	4.7	192
64	Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes. Electrochemistry Communications, 2004, 6, 1131-1134.	4.7	190
65	On the Controlled Loading of Single Platinum Atoms as a Co atalyst on TiO ₂ Anatase for Optimized Photocatalytic H ₂ Generation. Advanced Materials, 2020, 32, e1908505.	21.0	189
66	Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Nanoscale, 2011, 3, 3094.	5.6	186
67	Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomaterialia, 2008, 4, 1576-1582.	8.3	185
68	Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochimica Acta, 2009, 54, 4321-4327.	5.2	177
69	TiO2–Nb2O5 Nanotubes with Electrochemically Tunable Morphologies. Angewandte Chemie - International Edition, 2006, 45, 6993-6996.	13.8	174
70	Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomaterialia, 2009, 5, 2322-2330.	8.3	174
71	TiO ₂ Nanotubes in Dyeâ€Sensitized Solar Cells: Critical Factors for the Conversion Efficiency. Chemistry - an Asian Journal, 2009, 4, 520-525.	3.3	174
72	"Black―TiO ₂ Nanotubes Formed by High-Energy Proton Implantation Show Noble-Metal- <i>co</i> -Catalyst Free Photocatalytic H ₂ -Evolution. Nano Letters, 2015, 15, 6815-6820.	9.1	174

#	Article	IF	CITATIONS
73	The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion. Corrosion Science, 2005, 47, 1239-1250.	6.6	170
74	Photoresponse in the visible range from Cr doped TiO2 nanotubes. Chemical Physics Letters, 2007, 433, 323-326.	2.6	167
75	Anodic TiO2 nanotube layers: Why does self-organized growth occur—A mini review. Electrochemistry Communications, 2014, 46, 157-162.	4.7	165
76	Annealing effects on the photoresponse of TiO2nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, R28-R30.	1.8	164
77	Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochimica Acta, 2008, 53, 6995-7003.	5. 2	164
78	Anodic Formation of Thick Anatase TiO ₂ Mesosponge Layers for High-Efficiency Photocatalysis. Journal of the American Chemical Society, 2010, 132, 1478-1479.	13.7	163
79	Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integrative Biology (United Kingdom), 2009, 1, 525.	1.3	162
80	Self-organized porous TiO2 and ZrO2 produced by anodization. Corrosion Science, 2005, 47, 3324-3335.	6.6	161
81	Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochemistry Communications, 2007, 9, 1783-1787.	4.7	160
82	Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets. Journal of Materials Chemistry A, 2020, 8, 2490-2497.	10.3	159
83	Fabrication and characterization of smooth high aspect ratio zirconia nanotubes. Chemical Physics Letters, 2005, 410, 188-191.	2.6	158
84	Tantalum Nitride Nanorod Arrays: Introducing Ni–Fe Layered Double Hydroxides as a Cocatalyst Strongly Stabilizing Photoanodes in Water Splitting. Chemistry of Materials, 2015, 27, 2360-2366.	6.7	158
85	Formation of Doubleâ€Walled TiO ₂ Nanotubes and Robust Anatase Membranes. Advanced Materials, 2008, 20, 4135-4139.	21.0	157
86	High photocurrent conversion efficiency in self-organized porous WO3. Applied Physics Letters, 2006, 88, 203119.	3.3	148
87	Characterization of electronic properties of TiO2 nanotube films. Corrosion Science, 2007, 49, 203-210.	6.6	148
88	Self-Assembled Porous Tantalum Oxide Prepared in H[sub 2]SO[sub 4]/HF Electrolytes. Electrochemical and Solid-State Letters, 2005, 8, J10.	2.2	146
89	Self-Organized Anodic TiO ₂ Nanotube Arrays Functionalized by Iron Oxide Nanoparticles. Chemistry of Materials, 2009, 21, 662-672.	6.7	146
90	Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochemistry Communications, 2007, 9, 2822-2826.	4.7	145

#	Article	IF	CITATIONS
91	Efficient Photocatalytic H ₂ Evolution: Controlled Dewetting–Dealloying to Fabricate Siteâ€Selective Highâ€Activity Nanoporous Au Particles on Highly Ordered TiO ₂ Nanotube Arrays. Advanced Materials, 2015, 27, 3208-3215.	21.0	140
92	A Photo-Electrochemical Investigation of Self-Organized TiO[sub 2] Nanotubes. Journal of the Electrochemical Society, 2010, 157, G76.	2.9	139
93	Self-Organized High-Aspect-Ratio Nanoporous Zirconium Oxides Prepared by Electrochemical Anodization. Small, 2005, 1, 722-725.	10.0	138
94	Metastable Pitting and Semiconductive Properties of Passive Films. Journal of the Electrochemical Society, 1992, 139, 1908-1913.	2.9	137
95	Conductivity of TiO2 nanotubes: Influence of annealing time and temperature. Chemical Physics Letters, 2010, 494, 260-263.	2.6	136
96	Semimetallic TiO ₂ Nanotubes. Angewandte Chemie - International Edition, 2009, 48, 7236-7239.	13.8	133
97	Ultrafast Growth of Highly Ordered Anodic TiO ₂ Nanotubes in Lactic Acid Electrolytes. Journal of the American Chemical Society, 2012, 134, 11316-11318.	13.7	133
98	Initiation and Formation of Porous GaAs. Journal of the Electrochemical Society, 1996, 143, 3316-3322.	2.9	130
99	Tracer Investigation of Pore Formation in Anodic Titania. Journal of the Electrochemical Society, 2008, 155, C487.	2.9	129
100	TiO ₂ Nanotubes – Annealing Effects on Detailed Morphology and Structure. European Journal of Inorganic Chemistry, 2010, 2010, 4351-4356.	2.0	129
101	Aligned metal oxide nanotube arrays: key-aspects of anodic TiO ₂ nanotube formation and properties. Nanoscale Horizons, 2016, 1, 445-466.	8.0	129
102	Enhanced electrochromic properties of self-organized nanoporous WO3. Electrochemistry Communications, 2008, 10, 1777-1780.	4.7	122
103	Carbon doping of self-organized TiO2nanotube layers by thermal acetylene treatment. Nanotechnology, 2007, 18, 105604.	2.6	121
104	Influence of Water Content on the Growth of Anodic TiO[sub 2] Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes. Journal of the Electrochemical Society, 2010, 157, C18.	2.9	121
105	Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. Chemical Physics Letters, 2007, 445, 233-237.	2.6	120
106	Visible photoluminescence from porous GaAs. Applied Physics Letters, 1996, 69, 1620-1622.	3.3	119
107	TiO ₂ Nanotubes: Nitrogenâ€lon Implantation at Low Dose Provides Nobleâ€Metalâ€Free Photocatalytic H ₂ â€Evolution Activity. Angewandte Chemie - International Edition, 2016, 55, 3763-3767.	13.8	119
108	Dye-sensitized solar cells based on thick highly ordered TiO ₂ nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media. Nanotechnology, 2008, 19, 235602.	2.6	118

#	Article	IF	Citations
109	Synergistic Control of Mesenchymal Stem Cell Differentiation by Nanoscale Surface Geometry and Immobilized Growth Factors on TiO ₂ Nanotubes. Small, 2012, 8, 98-107.	10.0	118
110	Adhesion of osteoblasts to a nanorough titanium implant surface. International Journal of Nanomedicine, 2011, 6, 1801.	6.7	117
111	Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochemistry Communications, 2011, 13, 538-541.	4.7	117
112	Highâ€Contrast Electrochromic Switching Using Transparent Liftâ€Off Layers of Selfâ€Organized TiO ₂ Nanotubes. Small, 2008, 4, 1063-1066.	10.0	116
113	Transparent TiO ₂ Nanotube Electrodes via Thin Layer Anodization: Fabrication and Use in Electrochromic Devices. Langmuir, 2009, 25, 4841-4844.	3.5	116
114	Formation of Self-Organized Zirconium Titanate Nanotube Layers by Alloy Anodization. Advanced Materials, 2007, 19, 1757-1760.	21.0	115
115	Nb doping of TiO ₂ nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chemical Communications, 2011, 47, 2032-2034.	4.1	114
116	Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: A refreshable platform for methanol electrooxidation. Electrochemistry Communications, 2011, 13, 290-293.	4.7	114
117	TiO2 nanotube layers: Dose effects during nitrogen doping by ion implantation. Chemical Physics Letters, 2006, 419, 426-429.	2.6	112
118	Hierarchical DSSC structures based on "single walled―TiO ₂ nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%. Energy and Environmental Science, 2015, 8, 849-854.	30.8	111
119	Voltageâ€Induced Payload Release and Wettability Control on TiO ₂ and TiO ₂ Nanotubes. Angewandte Chemie - International Edition, 2010, 49, 351-354.	13.8	110
120	Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays: A Polarized Micro-Raman Investigation. Journal of Physical Chemistry C, 2008, 112, 12687-12696.	3.1	109
121	Oxide Nanotubes on Tiâ^'Ru Alloys: Strongly Enhanced and Stable Photoelectrochemical Activity for Water Splitting. Journal of the American Chemical Society, 2011, 133, 5629-5631.	13.7	109
122	Smooth anodic TiO2nanotubes: annealing and structure. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, R67-R69.	1.8	106
123	High aspect ratio ordered nanoporous Ta2O5 films by anodization of Ta. Electrochemistry Communications, 2008, 10, 428-432.	4.7	106
124	Strongly Enhanced Water Splitting Performance of Ta ₃ N ₅ Nanotube Photoanodes with Subnitrides. Advanced Materials, 2016, 28, 2432-2438.	21.0	106
125	Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochemistry Communications, 2010, 12, 1184-1186.	4.7	105
126	Transition from Nanopores to Nanotubes: Self-Ordered Anodic Oxide Structures on Titaniumâ ⁻ Aluminides. Chemistry of Materials, 2008, 20, 3245-3247.	6.7	104

#	Article	IF	Citations
127	TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops. Electrochemistry Communications, 2010, 12, 949-951.	4.7	104
128	Intrinsic Au Decoration of Growing TiO ₂ Nanotubes and Formation of a Highâ€Efficiency Photocatalyst for H ₂ Production. Advanced Materials, 2013, 25, 6133-6137.	21.0	103
129	Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. Bioactive Materials, 2018, 3, 55-63.	15.6	103
130	Illumination effects on the stability of the passive film on iron. Electrochimica Acta, 1995, 40, 775-783.	5.2	102
131	The origin for tubular growth of TiO2 nanotubes: A fluoride rich layer between tube-walls. Surface Science, 2011, 605, L57-L60.	1.9	102
132	Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation. ACS Nano, 2015, 9, 7113-7123.	14.6	102
133	Lattice Widening in Niobiumâ€Doped TiO ₂ Nanotubes: Efficient lon Intercalation and Swift Electrochromic Contrast. Angewandte Chemie - International Edition, 2008, 47, 7934-7937.	13.8	101
134	TiO ₂ nanotubes: photocatalyst for cancer cell killing. Physica Status Solidi - Rapid Research Letters, 2008, 2, 194-196.	2.4	100
135	Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile TiO2. Surface Science, 2010, 604, 346-353.	1.9	100
136	Solar water splitting: preserving the beneficial small feature size in porous α-Fe ₂ O ₃ photoelectrodes during annealing. Journal of Materials Chemistry A, 2013, 1, 212-215.	10.3	100
137	Aligned MoO _{<i>x</i>} /MoS ₂ Core–Shell Nanotubular Structures with a High Density of Reactive Sites Based on Selfâ€Ordered Anodic Molybdenum Oxide Nanotubes. Angewandte Chemie - International Edition, 2016, 55, 12252-12256.	13.8	100
138	Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta, 2006, 52, 94-101.	5.2	98
139	Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence. Acta Biomaterialia, 2016, 45, 357-366.	8.3	98
140	Templated dewetting: designing entirely self-organized platforms for photocatalysis. Chemical Science, 2016, 7, 6865-6886.	7.4	98
141	A lithographic approach to determine volume expansion factors during anodization: Using the example of initiation and growth of TiO2-nanotubes. Electrochimica Acta, 2009, 54, 5942-5948.	5.2	97
142	WO ₃ /TiO ₂ Nanotubes with Strongly Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2010, 16, 8993-8997.	3.3	97
143	α-Fe ₂ O ₃ /TiO ₂ 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale, 2017, 9, 134-142.	5.6	97
144	Selfâ€organized TiO ₂ Nanotube Arrays: Critical Effects on Morphology and Growth. Israel Journal of Chemistry, 2010, 50, 453-467.	2.3	96

#	Article	IF	Citations
145	Hematite Photoanodes: Synergetic Enhancement of Light Harvesting and Charge Management by Sandwiched with Fe ₂ TiO ₅ /Fe ₂ O ₃ /Pt Structures. Advanced Functional Materials, 2017, 27, 1703527.	14.9	96
146	Self-Organization of Anodic Nanotubes on Two Size Scales. Small, 2006, 2, 888-891.	10.0	95
147	Modulated TiO2 nanotube stacks and their use in interference sensors. Electrochemistry Communications, 2010, 12, 579-582.	4.7	95
148	Influence of anodization parameters on the expansion factor of TiO2 nanotubes. Electrochimica Acta, 2013, 91, 90-95.	5.2	95
149	Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity. Electrochemistry Communications, 2009, 11, 728-732.	4.7	94
150	Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. International Journal of Biochemistry and Cell Biology, 2014, 55, 187-195.	2.8	94
151	Visibleâ€Lightâ€Triggered Drug Release from TiO ₂ Nanotube Arrays: A Controllable Antibacterial Platform. Angewandte Chemie - International Edition, 2016, 55, 593-597.	13.8	94
152	Efficient solar energy conversion using TiO2 nanotubes produced by rapid breakdown anodization – a comparison. Physica Status Solidi - Rapid Research Letters, 2007, 1, 135-137.	2.4	93
153	Plasmon-induced hole-depletion layer on hematite nanoflake photoanodes for highly efficient solar water splitting. Nano Energy, 2017, 35, 171-178.	16.0	93
154	Light Emitting Micropatterns of Porous Si Created at Surface Defects. Physical Review Letters, 1998, 80, 4060-4063.	7.8	92
155	Electrochemical Behavior of Cr2 O 3 / Fe2 O 3 Artificial Passive Films Studied by In Sit the Electrochemical Society, 1998, 145, 791-801.	tu XANES.	Journal of
156	On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si. Chemical Physics Letters, 2006, 428, 421-425.	2.6	92
157	Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes. Electrochimica Acta, 2009, 54, 2640-2646.	5. 2	91
158	Formation of â€~single walled' TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chemical Communications, 2013, 49, 2067.	4.1	91
159	Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses. Journal of Materials Research, 2006, 21, 2824-2828.	2.6	90
160	Selfâ€Organized Arrays of Singleâ€Metal Catalyst Particles in TiO ₂ Cavities: A Highly Efficient Photocatalytic System. Angewandte Chemie - International Edition, 2013, 52, 7514-7517.	13.8	89
161	Influence of Ti ³⁺ defect-type on heterogeneous photocatalytic H ₂ evolution activity of TiO ₂ . Journal of Materials Chemistry A, 2020, 8, 1432-1442.	10.3	89
162	Formation of hexagonally ordered nanoporous anodic zirconia. Electrochemistry Communications, 2008, 10, 1916-1919.	4.7	88

#	Article	IF	Citations
163	Water annealing and other low temperature treatments of anodic TiO2 nanotubes: A comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochimica Acta, 2012, 82, 98-102.	5.2	87
164	Taâ€Doped TiO ₂ Nanotubes for Enhanced Solarâ€Light Photoelectrochemical Water Splitting. Chemistry - A European Journal, 2013, 19, 5841-5844.	3.3	87
165	Hydrogenated Anatase: Strong Photocatalytic Dihydrogen Evolution without the Use of a Co atalyst. Angewandte Chemie - International Edition, 2014, 53, 14201-14205.	13.8	87
166	Upconversion Nanoparticle-Assisted Payload Delivery from TiO ₂ under Near-Infrared Light Irradiation for Bacterial Inactivation. ACS Nano, 2020, 14, 337-346.	14.6	87
167	High aspect ratio, selfâ€ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH ₄ F electrolytes. Physica Status Solidi - Rapid Research Letters, 2009, 3, 64-66.	2.4	86
168	Electrochemical formation of self-organized anodic nanotube coating on Ti–28Zr–8Nb biomedical alloy surface. Acta Biomaterialia, 2008, 4, 318-323.	8.3	85
169	Selfâ€organized TiO ₂ nanotubes: Factors affecting their morphology and properties. Physica Status Solidi (B): Basic Research, 2010, 247, 2424-2435.	1.5	85
170	In Situ Xâ€Ray Absorption Nearâ€Edge Spectroscopic Study of the Cathodic Reduction of Artificial Iron Oxide Passive Films. Journal of the Electrochemical Society, 1996, 143, 574-582.	2.9	84
171	Transpassive Dissolution of Cr and Sputterâ€Deposited Cr Oxides Studied by In Situ Xâ€Ray Nearâ€Edge Spectroscopy. Journal of the Electrochemical Society, 1996, 143, 3997-4005.	2.9	84
172	Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation. Journal of the Electrochemical Society, 2005, 152, C639.	2.9	84
173	Electrochemical formation of self-organized zirconium titanate nanotube multilayers. Electrochemistry Communications, 2007, 9, 615-619.	4.7	83
174	Corrosion, antibacterial activity and haemocompatibility of TiO 2 nanotubes as a function of their annealing temperature. Corrosion Science, 2016, 103, 215-222.	6.6	83
175	A Cocatalytic Electronâ€Transfer Cascade Siteâ€Selectively Placed on TiO ₂ Nanotubes Yields Enhanced Photocatalytic H ₂ Evolution. Advanced Functional Materials, 2018, 28, 1704259.	14.9	83
176	Comparison of the Semiconductive Properties of Sputterâ€Deposited Iron Oxides with the Passive Film on Iron. Journal of the Electrochemical Society, 1998, 145, 378-385.	2.9	82
177	Voltage Oscillations and Morphology during the Galvanostatic Formation of Self-Organized TiO[sub 2] Nanotubes. Journal of the Electrochemical Society, 2006, 153, B137.	2.9	82
178	Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. Journal of Electroceramics, 2006, 16, 29-34.	2.0	82
179	Multilayer TiO[sub 2]–Nanotube Formation by Two-Step Anodization. Electrochemical and Solid-State Letters, 2007, 10, K28.	2.2	82
180	Photo-induced effects on self-organized TiO ₂ nanotube arrays: the influence of surface morphology. Nanotechnology, 2009, 20, 045603.	2.6	82

#	Article	IF	Citations
181	Site-selective Pt dewetting on WO3-coated TiO2 nanotube arrays: An electron transfer cascade-based H2 evolution photocatalyst. Applied Catalysis B: Environmental, 2018, 237, 198-205.	20.2	82
182	Electrochemical synthesis of self-organized TiO2 nanotubular structures using an ionic liquid (BMIM-BF4). Electrochimica Acta, 2008, 54, 643-648.	5.2	81
183	Self-organized TiO2 nanotubes: Visible light activation by Ni oxide nanoparticle decoration. Electrochemistry Communications, 2010, 12, 254-257.	4.7	81
184	Nitrogen doping of nanoporous WO ₃ layers by NH ₃ treatment for increased visible light photoresponse. Nanotechnology, 2010, 21, 105704.	2.6	81
185	Enhanced selfâ€ordering of anodic ZrO ₂ nanotubes in inorganic and organic electrolytes using twoâ€step anodization. Physica Status Solidi - Rapid Research Letters, 2008, 2, 102-104.	2.4	79
186	Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes. Chemical Physics Letters, 2010, 490, 58-62.	2.6	79
187	Size-Selective Separation of Macromolecules by Nanochannel Titania Membrane with Self-Cleaning (Declogging) Ability. Journal of the American Chemical Society, 2010, 132, 7893-7895.	13.7	79
188	Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO2 nanotubes. Electrochimica Acta, 2019, 319, 61-71.	5.2	79
189	In Situ Characterization of Anodic Silicon Oxide Films by AC Impedance Measurements. Journal of the Electrochemical Society, 1995, 142, 1705-1712.	2.9	78
190	TiO ₂ Nano Test Tubes as a Selfâ€Cleaning Platform for Highâ€Sensitivity Immunoassays. Small, 2010, 6, 1180-1184.	10.0	78
191	On the stability of rivulet flow. Journal of Fluid Mechanics, 1990, 215, 125.	3.4	7 5
192	Unexpected Adsorption of Oxygen on TiO2Nanotube Arrays:Â Influence of Crystal Structure. Nano Letters, 2007, 7, 1091-1094.	9.1	75
193	Formation of a Nonâ€Thicknessâ€Limited Titanium Dioxide Mesosponge and its Use in Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2009, 48, 9326-9329.	13.8	75
194	TiO ₂ nanotubes grown in different organic electrolytes: Twoâ€size selfâ€organization, single vs. doubleâ€walled tubes, and giant diameters. Physica Status Solidi - Rapid Research Letters, 2010, 4, 215-217.	2.4	75
195	Adherence of oral streptococci to nanostructured titanium surfaces. Dental Materials, 2015, 31, 1460-1468.	3.5	75
196	Enabling the Anodic Growth of Highly Ordered V ₂ O ₅ Nanoporous/Nanotubular Structures. Angewandte Chemie - International Edition, 2011, 50, 9071-9075.	13.8	74
197	Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. Electrochemistry Communications, 2008, 10, 910-913.	4.7	73
198	The diameter of anodic TiO ₂ nanotubes affects bone formation and correlates with the bone morphogenetic proteinâ€2 expression ⟨i⟩in vivo). Clinical Oral Implants Research, 2012, 23, 359-366.	4.5	73

#	Article	IF	Citations
199	Interfacial properties of self-organized TiO2 nanotubes studied by impedance spectroscopy. Journal of Solid State Electrochemistry, 2007, 11, 1077-1084.	2.5	72
200	Self-organized nano-tubes of TiO2–MoO3 with enhanced electrochromic properties. Chemical Communications, 2009, , 2008.	4.1	72
201	Noble Metals on Anodic TiO ₂ Nanotube Mouths: Thermal Dewetting of Minimal Pt Coâ€Catalyst Loading Leads to Significantly Enhanced Photocatalytic H ₂ Generation. Advanced Energy Materials, 2016, 6, 1501926.	19.5	72
202	Iron Passivity in Borate Buffer: Formation of a Deposit Layer and Its Influence on the Semiconducting Properties. Journal of the Electrochemical Society, 1998, 145, 609-614.	2.9	71
203	Optical properties of porous GaAs. Physica E: Low-Dimensional Systems and Nanostructures, 1999, 4, 102-110.	2.7	71
204	Anodic Formation of Selfâ€Organized Cobalt Oxide Nanoporous Layers. Angewandte Chemie - International Edition, 2013, 52, 2077-2081.	13.8	71
205	Selective High-Resolution Electrodeposition on Semiconductor Defect Patterns. Physical Review Letters, 2000, 85, 2985-2988.	7.8	70
206	Self-organized porous and tubular oxide layers on TiAl alloys. Electrochemistry Communications, 2007, 9, 2397-2402.	4.7	70
207	Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. Chemical Communications, 2012, 48, 4244.	4.1	70
208	Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles. Sensors and Actuators B: Chemical, 2020, 302, 127200.	7.8	70
209	Influence Of Anodization Parameters On Morphology Of TiO2 Nanostructured Surfaces. Advanced Materials Letters, 2016, 7, 23-28.	0.6	70
210	Lithium-ion insertion in anodic TiO2nanotubes resulting in high electrochromic contrast. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1281-1285.	1.8	69
211	Ordered Ferroelectric Lead Titanate Nanocellular Structure by Conversion of Anodic TiO ₂ Nanotubes. Advanced Materials, 2009, 21, 3121-3125.	21.0	69
212	Mechanical properties of anatase and semi-metallic TiO2 nanotubes. Acta Materialia, 2010, 58, 6317-6323.	7.9	69
213	Sbâ€Doped SnO ₂ Nanorods Underlayer Effect to the αâ€Fe ₂ O ₃ Nanorods Sheathed with TiO ₂ for Enhanced Photoelectrochemical Water Splitting. Small, 2018, 14, e1703860.	10.0	69
214	Enhanced water splitting activity of M-doped Ta3N5 (M = Na, K, Rb, Cs). Chemical Communications, 2012, 48, 8685.	4.1	67
215	"Suspended―Pt nanoparticles over TiO ₂ nanotubes for enhanced photocatalytic H ₂ evolution. Chemical Communications, 2014, 50, 9653-9656.	4.1	67
216	Ultrafast oxide nanotube formation on TiNb, TiZr and TiTa alloys by rapid breakdown anodization. Electrochimica Acta, 2010, 55, 8883-8887.	5.2	66

#	Article	IF	CITATIONS
217	Graphitic C ₃ N ₄ â€Sensitized TiO ₂ Nanotube Layers: A Visibleâ€Light Activated Efficient Metalâ€Free Antimicrobial Platform. Chemistry - A European Journal, 2016, 22, 3947-3951.	3.3	66
218	Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells. Electrochemistry Communications, 2012, 15, 1-4.	4.7	65
219	Anodic TiO2 nanotubes: double walled vs. single walled. Faraday Discussions, 2013, 164, 107.	3.2	64
220	Anodic Nanotubular/porous Hematite Photoanode for Solar Water Splitting: Substantial Effect of Iron Substrate Purity. ChemSusChem, 2014, 7, 934-940.	6.8	64
221	Thick porous tungsten trioxide films by anodization of tungsten in fluoride containing phosphoric acid electrolyte. Electrochemistry Communications, 2009, 11, 1908-1911.	4.7	63
222	TiO[sub 2] Nanotubes: Efficient Suppression of Top Etching during Anodic Growth. Electrochemical and Solid-State Letters, 2009, 12, C17.	2.2	63
223	Polypyrrole self-organized nanopore arrays formed by controlled electropolymerization in TiO2 nanotube template. Chemical Communications, 2010, 46, 8585.	4.1	62
224	Spaced TiO ₂ nanotube arrays allow for a high performance hierarchical supercapacitor structure. Journal of Materials Chemistry A, 2017, 5, 1895-1901.	10.3	62
225	Critical parameters and factors in the formation of spaced TiO2 nanotubes by self-organizing anodization. Electrochimica Acta, 2018, 268, 435-447.	5.2	62
226	Bulk Metal Oxides as a Model for the Electronic Properties of Passive Films. Journal of the Electrochemical Society, 1995, 142, 3336-3342.	2.9	61
227	Formation of visible light emitting porous GaAs micropatterns. Applied Physics Letters, 1998, 72, 1039-1041.	3.3	61
228	Anodic oxide nanotube layers on Ti–Ta alloys: Substrate composition, microstructure and self-organization on two-size scales. Corrosion Science, 2009, 51, 1528-1533.	6.6	61
229	Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment. Electrochemistry Communications, 2010, 12, 574-578.	4.7	61
230	Black Magic in Gray Titania: Nobleâ€Metalâ€Free Photocatalytic H ₂ Evolution from Hydrogenated Anatase. ChemSusChem, 2017, 10, 62-67.	6.8	61
231	Templated Dewetting–Alloying of NiCu Bilayers on TiO ₂ Nanotubes Enables Efficient Noble-Metal-Free Photocatalytic H ₂ Evolution. ACS Catalysis, 2018, 8, 5298-5305.	11.2	61
232	Growth of ordered anodic SnO ₂ nanochannel layers and their use for H ₂ gas sensing. Journal of Materials Chemistry A, 2014, 2, 915-920.	10.3	60
233	Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Singleâ€Crystalline Fe ₂ O ₃ Nanoflake Photoelectrodes. ChemSusChem, 2017, 10, 2720-2727.	6.8	60
234	Passivity of Iron in Alkaline Solutions Studied by In Situ XANES and a Laser Reflection Technique. Journal of the Electrochemical Society, 1999, 146, 2097-2102.	2.9	59

#	Article	IF	Citations
235	Nobleâ€Metalâ€Free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH ₂ . Advanced Materials, 2017, 29, 1604747.	21.0	59
236	Micropatterned TiO2 nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid. Acta Biomaterialia, 2011, 7, 424-431.	8.3	57
237	Highly Conducting Spaced TiO ₂ Nanotubes Enable Defined Conformal Coating with Nanocrystalline Nb ₂ O ₅ and High Performance Supercapacitor Applications. Small, 2017, 13, 1603821.	10.0	57
238	Investigations on the passivity of iron in borate and phosphate buffers, pH 8.4. Corrosion Science, 2006, 48, 3472-3488.	6.6	56
239	Anodic mesoporous TiO2 layer on Ti for enhanced formation of biomimetic hydroxyapatite. Acta Biomaterialia, 2011, 7, 1873-1879.	8.3	56
240	Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy, 2021, 83, 105828.	16.0	56
241	Impedance Behavior of TiO[sub 2] Nanotubes Formed by Anodization in NaF Electrolytes. Journal of the Electrochemical Society, 2008, 155, C293.	2.9	55
242	Influence of annealing temperature on photoelectrochemical water splitting of \hat{l}_{\pm} -Fe2O3 films prepared by anodic deposition. Electrochimica Acta, 2013, 91, 307-313.	5.2	55
243	Enhanced performance of dye-sensitized solar cells based on TiO ₂ nanotube membranes using an optimized annealing profile. Chemical Communications, 2015, 51, 1631-1634.	4.1	55
244	On the Supercapacitive Behaviour of Anodic Porous WO3-Based Negative Electrodes. Electrochimica Acta, 2017, 232, 192-201.	5.2	55
245	Self-decoration of Pt metal particles on TiO ₂ nanotubes used for highly efficient photocatalytic H ₂ production. Chemical Communications, 2014, 50, 6123-6125.	4.1	54
246	Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO 2 nanotubes. International Journal of Pharmaceutics, 2017, 517, 296-302.	5.2	54
247	Formation and Dissolution of the Passive Film on Iron Studied by a Light Reflectance Technique. Journal of the Electrochemical Society, 1997, 144, 2307-2312.	2.9	53
248	High resolution LAPS and SPIM. Electrochemistry Communications, 2010, 12, 758-760.	4.7	53
249	Photoelectrochemical and photocatalytic activity of tungsten doped TiO2 nanotube layers in the near visible region. Electrochimica Acta, 2011, 56, 10557-10561.	5.2	53
250	Anodic TiO2 nanotubes: Influence of top morphology on their photocatalytic performance. Electrochemistry Communications, 2012, 22, 162-165.	4.7	53
251	MoO ₃ in Selfâ€Organized TiO ₂ Nanotubes for Enhanced Photocatalytic Activity. Chemistry - an Asian Journal, 2010, 5, 66-69.	3.3	52
252	Various sized nanotubes on TiZr for antibacterial surfaces. Applied Surface Science, 2013, 270, 190-196.	6.1	52

#	Article	IF	Citations
253	Bipolar anodization enables the fabrication of controlled arrays of TiO ₂ nanotube gradients. Journal of Materials Chemistry A, 2014, 2, 17740-17745.	10.3	52
254	Protein interactions with corroding metal surfaces: comparison of Mg and Fe. Faraday Discussions, 2015, 180, 347-360.	3.2	52
255	Voltage-Switchable Biosensor with Gold Nanoparticles on TiO ₂ Nanotubes Decorated with CdS Quantum Dots for the Detection of Cholesterol and H ₂ O ₂ . ACS Applied Materials & Detection of Cholesterol and H ₂	8.0	52
256	Enhancement of the Electrocatalytic Oxidation of Methanol at Ptâ^•Ru Nanoparticles Immobilized in Different WO[sub 3] Matrices. Electrochemical and Solid-State Letters, 2006, 9, E13.	2.2	51
257	Nickel Hydroxide Nanoparticle Activated Semiâ€metallic TiO ₂ Nanotube Arrays for Nonâ€enzymatic Glucose Sensing. Chemistry - A European Journal, 2013, 19, 15530-15534.	3.3	51
258	Ti and Sn co-doped anodic \hat{l} ±-Fe2O3 films for efficient water splitting. Electrochemistry Communications, 2013, 30, 21-25.	4.7	51
259	Enhancing the Water Splitting Efficiency of Snâ€Doped Hematite Nanoflakes by Flame Annealing. Chemistry - A European Journal, 2014, 20, 77-82.	3.3	51
260	Photoelectrochemical H ₂ Generation from Suboxide TiO ₂ Nanotubes: Visibleâ€Light Absorption versus Conductivity. Chemistry - A European Journal, 2017, 23, 12406-12411.	3.3	51
261	Optimizing TiO ₂ Nanotube Top Geometry for Use in Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 11862-11866.	3.3	50
262	Thermal air oxidation of Fe: rapid hematite nanowire growth and photoelectrochemical water splitting performance. Electrochemistry Communications, 2012, 23, 59-62.	4.7	50
263	Enhanced Photoelectrochemical Water Splitting Efficiency of a Hematite–Ordered Sb:SnO ₂ Host–Guest System. ChemSusChem, 2014, 7, 421-424.	6.8	50
264	Electron beam-induced carbon masking for electrodeposition on semiconductor surfaces. Applied Physics Letters, 2001, 78, 2940-2942.	3.3	49
265	Binding of plasma proteins to titanium dioxide nanotubes with different diameters. International Journal of Nanomedicine, 2015, 10, 1359.	6.7	49
266	Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. Nano Letters, 2020, 20, 3663-3672.	9.1	49
267	Functionalization of Metallic Magnesium with Protein Layers via Linker Molecules. Langmuir, 2010, 26, 12044-12048.	3.5	48
268	Effects of low oxygen annealing on the photoelectrochemical water splitting properties of î±-Fe ₂ O ₃ . Journal of Materials Chemistry A, 2020, 8, 1315-1325.	10.3	48
269	A novel approach for the formation of Mg(OH)2/MgO nanowhiskers on magnesium: Rapid anodization in chloride containing solutions. Electrochemistry Communications, 2008, 10, 288-292.	4.7	47
270	Molten <i>>o</i> -H ₃ PO ₄ : A New Electrolyte for the Anodic Synthesis of Self-Organized Oxide Structures â ⁻ WO ₃ Nanochannel Layers and Others. Journal of the American Chemical Society, 2015, 137, 5646-5649.	13.7	47

#	Article	IF	CITATIONS
271	Nobleâ€Metalâ€Free Photocatalytic H ₂ Generation: Active and Inactive â€~Black' TiO ₂ Nanotubes and Synergistic Effects. Chemistry - A European Journal, 2016, 22, 13810-13814.	b} 3.3	47
272	FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Progress in Materials Science, 2020, 110, 100632.	32.8	47
273	Less known facts and findings about TiO ₂ nanotubes. Nanoscale, 2020, 12, 8119-8132.	5.6	47
274	Effect of Electrolyte Conductivity on the Formation of a Nanotubular TiO2 Photoanode for a Dye-Sensitized Solar Cell. Journal of the Korean Physical Society, 2009, 54, 1027-1031.	0.7	47
275	Artificial Cr―and Feâ€Oxide Passive Layers Prepared by Sputter Deposition. Journal of the Electrochemical Society, 1995, 142, 3067-3972.	2.9	46
276	Thin anodic oxides formed on GaAs in aqueous solutions. Journal of Applied Physics, 1996, 79, 7303-7311.	2.5	46
277	Dissolution of Thin Iron Oxide Films Used as Models for Iron Passive Films Studied by In Situ Xâ€Ray Absorption Nearâ€Edge Spectroscopy. Journal of the Electrochemical Society, 1997, 144, 198-204.	2.9	46
278	Thick Self-Ordered Nanoporous Ta[sub 2]O[sub 5] Films with Long-Range Lateral Order. Journal of the Electrochemical Society, 2009, 156, K104.	2.9	46
279	Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting. Electrochemistry Communications, 2013, 34, 308-311.	4.7	46
280	Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways. International Journal of Nanomedicine, 2015, 10, 6455.	6.7	46
281	Plasmonâ€Enhanced Photoelectrochemical Water Splitting Using Au Nanoparticles Decorated on Hematite Nanoflake Arrays. ChemSusChem, 2015, 8, 618-622.	6.8	46
282	Carbon cladded TiO ₂ nanotubes: fabrication and use in 3D-RuO ₂ based supercapacitors. Chemical Communications, 2015, 51, 7614-7617.	4.1	46
283	Intrinsically Activated SrTiO ₃ : Photocatalytic H ₂ Evolution from Neutral Aqueous Methanol Solution in the Absence of Any Noble Metal Cocatalyst. ACS Applied Materials & amp; Interfaces, 2018, 10, 29532-29542.	8.0	46
284	Engineering of the Electron Transport Layer/Perovskite Interface in Solar Cells Designed on TiO ₂ Rutile Nanorods. Advanced Functional Materials, 2020, 30, 1909738.	14.9	46
285	Activation of αâ€Fe ₂ O ₃ for Photoelectrochemical Water Splitting Strongly Enhanced by Low Temperature Annealing in Low Oxygen Containing Ambient. Chemistry - A European Journal, 2020, 26, 2685-2692.	3.3	46
286	An Operando X-ray Absorption Spectroscopy Study of a NiCuâ^'TiO ₂ Photocatalyst for H ₂ Evolution. ACS Catalysis, 2020, 10, 8293-8302.	11.2	46
287	Tuning the Selectivity of Photocatalytic Synthetic Reactions Using Modified TiO ₂ Nanotubes. Angewandte Chemie - International Edition, 2014, 53, 12605-12608.	13.8	45
288	Anodic TiO2 nanotubes decorated by Pt nanoparticles using ALD: An efficient electrocatalyst for methanol oxidation. Journal of Catalysis, 2018, 365, 86-93.	6.2	45

#	Article	IF	Citations
289	A Oneâ€Pot Universal Approach to Fabricate Lubricantâ€Infused Slippery Surfaces on Solid Substrates. Advanced Functional Materials, 2021, 31, 2101090.	14.9	45
290	A surface analytical and electrochemical study on the role of cerium in the chemical surface treatment of stainless steels. Corrosion Science, 1997, 39, 1897-1913.	6.6	44
291	Bright visible luminescence of self-organized ZrO2 nanotubes. Journal of Solid State Electrochemistry, 2010, 14, 285-288.	2.5	44
292	Increased photocurrent response in Nb-doped TiO2 nanotubes. Journal of Materials Chemistry, 2011, 21, 15205.	6.7	44
293	Highly self-ordered nanochannel TiO2 structures by anodization in a hot glycerol electrolyte. Chemical Communications, 2011, 47, 5789.	4.1	44
294	Polymer nanowires or nanopores? Site selective filling of titania nanotubes with polypyrrole. Journal of Materials Chemistry, 2011, 21, 17909.	6.7	44
295	Tungsten doping of Ta3N5-nanotubes for band gap narrowing and enhanced photoelectrochemical water splitting efficiency. Electrochemistry Communications, 2015, 51, 85-88.	4.7	44
296	Ideally ordered porous TiO2 prepared by anodization of pretextured Ti by nanoimprinting process. Electrochemistry Communications, 2015, 50, 73-76.	4.7	44
297	Advanced Photocatalysts: Pinning Single Atom Coâ€Catalysts on Titania Nanotubes. Advanced Functional Materials, 2021, 31, 2102843.	14.9	44
298	Selective palladium electrochemical deposition onto AFM-scratched silicon surfaces. Electrochimica Acta, 2003, 48, 3123-3130.	5.2	43
299	The efficiency of nanotube formation on titanium anodized under voltage and current control in fluoride/glycerol electrolyte. Nanotechnology, 2008, 19, 355701.	2.6	43
300	X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release. Electrochemistry Communications, 2009, 11, 2077-2080.	4.7	43
301	ToF-SIMS and XPS Studies of the Adsorption Characteristics of a Zn-Porphyrin on TiO ₂ . Langmuir, 2010, 26, 3531-3538.	3.5	43
302	Highly controlled coating of biomimetic polydopamine in TiO2 nanotubes. Electrochemistry Communications, 2015, 52, 41-44.	4.7	43
303	Photocatalytic H ₂ Generation Using Dewetted Pt-Decorated TiO ₂ Nanotubes: Optimized Dewetting and Oxide Crystallization by a Multiple Annealing Process. Journal of Physical Chemistry C, 2016, 120, 15884-15892.	3.1	43
304	Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry, 2016, 109, 79-86.	4.6	43
305	Uniform ALD deposition of Pt nanoparticles within 1D anodic TiO2 nanotubes for photocatalytic H2 generation. Electrochemistry Communications, 2018, 86, 6-11.	4.7	43
306	Anodic Synthesis of Hierarchical SnS/SnO <i>_x</i> Hollow Nanospheres and Their Application for Highâ€Performance Naâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1901000.	14.9	43

#	Article	IF	Citations
307	Optimized Pt Single Atom Harvesting on TiO ₂ Nanotubesâ€"Towards a Most Efficient Photocatalyst. Small, 2022, 18, e2104892.	10.0	43
308	A new route for the formation of self-organized anodic porous alumina in neutral electrolytes. Electrochemistry Communications, 2007, 9, 545-550.	4.7	42
309	Electron beam induced in-vacuo Ag deposition on TiO2 from ionic liquids. Electrochemistry Communications, 2009, 11, 1567-1570.	4.7	42
310	Highly ordered TiO2 nanotube-stumps with memristive response. Electrochemistry Communications, 2013, 34, 177-180.	4.7	42
311	Hydrothermal growth of highly oriented single crystalline Ta ₂ O ₅ nanorod arrays and their conversion to Ta ₃ N ₅ for efficient solar driven water splitting. Chemical Communications, 2014, 50, 15561-15564.	4.1	42
312	The two step nanotube formation on TiZr as scaffolds for cell growth. Bioelectrochemistry, 2014, 98, 39-45.	4.6	42
313	Fast fabrication of Ta2O5 nanotube arrays and their conversion to Ta3N5 for efficient solar driven water splitting. Electrochemistry Communications, 2015, 50, 15-19.	4.7	42
314	Inducing a Nanotwinned Grain Structure within the TiO ₂ Nanotubes Provides Enhanced Electron Transport and DSSC Efficiencies >10%. Advanced Energy Materials, 2018, 8, 1800981.	19.5	42
315	Flexible self-organization of two size-scales oxide nanotubes on Ti45Nb alloy. Electrochemistry Communications, 2007, 9, 2403-2407.	4.7	41
316	High-Efficiency Conversion of Sputtered Ti Thin Films into TiO[sub 2] Nanotubular Layers. Electrochemical and Solid-State Letters, 2008, 11, C37.	2.2	41
317	Self-Ordered Hexagonal Nanoporous Hafnium Oxide and Transition to Aligned HfO[sub 2] Nanotube Layers. Electrochemical and Solid-State Letters, 2009, 12, K45.	2.2	41
318	Highly defined and ordered topâ€openings in TiO ₂ nanotube arrays. Physica Status Solidi - Rapid Research Letters, 2010, 4, 151-153.	2.4	41
319	Surface-assisted laser desorption–ionization mass spectrometry on titanium dioxide (TiO2) nanotube layers. Analyst, The, 2012, 137, 3058.	3.5	41
320	Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films. Chemical Engineering Journal, 2012, 179, 151-157.	12.7	41
321	Fast Electron Transport and High Surface Area: Potential Application of Porous Anatase Single Crystals in Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 7933-7935.	13.8	41
322	On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method. Applied Catalysis B: Environmental, 2015, 165, 344-350.	20.2	41
323	Robust Self-Organization of Oxide Nanotubes over a Wide pH Range. Chemistry of Materials, 2007, 19, 1534-1536.	6.7	40
324	Electrochromic properties of anodically grown mixed V2O5–TiO2 nanotubes. Electrochemistry Communications, 2011, 13, 1021-1025.	4.7	40

#	Article	IF	Citations
325	Enhanced Charge Transport in Tantalum Nitride Nanotube Photoanodes for Solar Water Splitting. ChemSusChem, 2015, 8, 2615-2620.	6.8	40
326	$\label{eq:magnA} @li-Phases in Anatase Strongly Promote Cocatalyst-Free Photocatalytic Hydrogen Evolution. ACS Catalysis, 2019, 9, 3627-3632.$	11.2	40
327	Selfâ€Enhancing H ₂ Evolution from TiO ₂ Nanostructures under Illumination. ChemSusChem, 2019, 12, 1900-1905.	6.8	40
328	Novel highly active and self-healing Co(CO ₃) _x OH _y cocatalysts on BiVO ₄ photoanodes for effective solar water oxidation. Journal of Materials Chemistry A, 2020, 8, 2563-2570.	10.3	40
329	Dewetting of PtCu Nanoalloys on TiO ₂ Nanocavities Provides a Synergistic Photocatalytic Enhancement for Efficient H ₂ Evolution. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38211-38221.	8.0	40
330	Another look at "Stem cell fate dictated solely by altered nanotube dimension― Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E60; author reply E61.	7.1	39
331	Covalent functionalization of TiO2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells. Integrative Biology (United Kingdom), 2011, 3, 927.	1.3	39
332	Improved water-splitting behaviour of flame annealed TiO2 nanotubes. Electrochemistry Communications, 2011, 13, 1030-1034.	4.7	39
333	Highly ordered nanoporous Ta2O5 formed by anodization of Ta at high temperatures in a glycerol/phosphate electrolyte. Electrochemistry Communications, 2011, 13, 542-545.	4.7	39
334	Nb-doping of TiO2/SrTiO3 nanotubular heterostructures for enhanced photocatalytic water splitting. Electrochemistry Communications, 2012, 17, 56-59.	4.7	39
335	Use of Anodic TiO ₂ Nanotube Layers as Mesoporous Scaffolds for Fabricating CH ₃ NH ₃ Pbl ₃ Perovskiteâ€Based Solidâ€State Solar Cells. ChemElectroChem, 2015, 2, 824-828.	3.4	39
336	Semimetallic core-shell TiO 2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO 2 supercapacitors. Materials Today Energy, 2017, 6, 46-52.	4.7	39
337	Overcoming Interfacial Losses in Solutionâ€Processed Organic Multiâ€Junction Solar Cells. Advanced Energy Materials, 2017, 7, 1601959.	19.5	39
338	Nanoscale patterning of Si(100) surfaces by scratching through the native oxide layer using atomic force microscope. Applied Physics Letters, 2001, 79, 1882-1884.	3.3	38
339	TiO2 nanotube layers: Flexible and electrically active flow-through membranes. Electrochemistry Communications, 2010, 12, 1352-1355.	4.7	38
340	Some critical factors for photocatalysis on self-organized TiO2 nanotubes. Journal of Solid State Electrochemistry, 2012, 16, 3499-3504.	2.5	38
341	Anodically formed transparent mesoporous TiO2 electrodes for high electrochromic contrast. Journal of Materials Chemistry, 2012, 22, 9821.	6.7	38
342	Strongly enhanced photocurrent response for Na doped Ta3N5-nano porous structure. Electrochemistry Communications, 2012, 17, 67-70.	4.7	38

#	Article	IF	CITATIONS
343	Highâ€Aspectâ€Ratio Dyeâ€Sensitized Solar Cells Based on Robust, Fastâ€Growing TiO ₂ Nanotubes. Chemistry - A European Journal, 2013, 19, 2966-2970.	· 3.3	38
344	Stable Coâ€Catalystâ€Free Photocatalytic H ₂ Evolution From Oxidized Titanium Nitride Nanopowders. Angewandte Chemie - International Edition, 2015, 54, 13385-13389.	13.8	38
345	Controlled spacing of self-organized anodic TiO2 nanotubes. Electrochemistry Communications, 2016, 69, 76-79.	4.7	38
346	The double-walled nature of TiO 2 nanotubes and formation of tube-in-tube structures – a characterization of different tube morphologies. Electrochimica Acta, 2017, 231, 721-731.	5.2	38
347	Nanostar morphology of plasmonic particles strongly enhances photoelectrochemical water splitting of TiO2 nanorods with superior incident photon-to-current conversion efficiency in visible/near-infrared region. Electrochimica Acta, 2018, 260, 212-220.	5.2	38
348	Radiative and Non-Radiative Recombination Pathways in Mixed-Phase TiO2 Nanotubes for PEC Water-Splitting. Catalysts, 2019, 9, 204.	3.5	38
349	Electron beam induced carbon deposition used as a negative resist for selective porous silicon formation. Surface Science, 2003, 524, 40-48.	1.9	37
350	Metallurgical aspects on the formation of self-organized anodic oxide nanotube layers. Electrochimica Acta, 2009, 54, 5155-5162.	5.2	37
351	A self-cleaning nonenzymatic glucose detection system based on titania nanotube arrays modified with platinum nanoparticles. Electrochemistry Communications, 2011, 13, 1217-1220.	4.7	37
352	Interaction of Bovine Serum Albumin and Lysozyme with Stainless Steel Studied by Time-of-Flight Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy. Langmuir, 2012, 28, 16306-16317.	3.5	37
353	Ruâ€doped TiO ₂ nanotubes: Improved performance in dyeâ€sensitized solar cells. Physica Status Solidi - Rapid Research Letters, 2012, 6, 169-171.	2.4	37
354	Flame annealing effects on self-organized TiO2 nanotubes. Electrochimica Acta, 2012, 66, 12-21.	5.2	37
355	Ar+-ion bombardment of TiO2 nanotubes creates co-catalytic effect for photocatalytic open circuit hydrogen evolution. Electrochemistry Communications, 2014, 49, 60-64.	4.7	37
356	Nanoporous AuPt and AuPtAg alloy co-catalysts formed by dewetting–dealloying on an ordered TiO ₂ nanotube surface lead to significantly enhanced photocatalytic H ₂ generation. Journal of Materials Chemistry A, 2018, 6, 13599-13606.	10.3	37
357	Forming a Highly Active, Homogeneously Alloyed AuPt Co-catalyst Decoration on TiO ₂ Nanotubes Directly During Anodic Growth. ACS Applied Materials & Interfaces, 2018, 10, 18220-18226.	8.0	37
358	The effect of grain boundaries on high temperature oxidation of new γ′-strengthened Co–Al–W–B superalloys. Corrosion Science, 2014, 79, 29-33.	6.6	36
359	Thin MoS2 on TiO2 nanotube layers: An efficient co-catalyst/harvesting system for photocatalytic H2 evolution. Electrochemistry Communications, 2016, 73, 33-37.	4.7	36
360	Atomic Force Microscopy-Induced Nanopatterning of Si(100) Surfaces. Journal of the Electrochemical Society, 2001, 148, C640.	2.9	35

#	Article	IF	CITATIONS
361	Anodic TiO[sub 2] Layer Conversion: Fluoride-Induced Rutile Formation at Room Temperature. Electrochemical and Solid-State Letters, 2008, 11, K11.	2.2	35
362	Anodic growth of self-ordered magnesium oxy-fluoride nanoporous/tubular layers on Mg alloy (WE43). Electrochemistry Communications, 2010, 12, 796-799.	4.7	35
363	Formation of Highly Ordered Nanochannel Nb Oxide by Selfâ€Organizing Anodization. Chemistry - A European Journal, 2012, 18, 9521-9524.	3.3	35
364	Nanochannels formed on TiZr alloy improve biological response. Acta Biomaterialia, 2015, 24, 370-377.	8.3	35
365	Aminated TiO 2 nanotubes as a photoelectrochemical water splitting photoanode. Catalysis Today, 2017, 281, 189-197.	4.4	35
366	Li ⁺ Preâ€Insertion Leads to Formation of Solid Electrolyte Interface on TiO ₂ Nanotubes That Enables Highâ€Performance Anodes for Sodium Ion Batteries. Advanced Energy Materials, 2020, 10, 1903448.	19.5	35
367	Direct anodic growth of thick WO3 mesosponge layers and characterization of their photoelectrochemical response. Electrochimica Acta, 2010, 56, 828-833.	5.2	34
368	Anodic TiO2 nanotube layers electrochemically filled with MoO3 and their antimicrobial properties. Biointerphases, 2011, 6, 16-21.	1.6	34
369	Role of Transparent Electrodes for High Efficiency TiO ₂ Nanotube Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16562-16566.	3.1	34
370	Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals. Journal of Power Sources, 2015, 275, 341-350.	7.8	34
371	Freeâ€5tanding Membranes to Study the Optical Properties of Anodic TiO ₂ Nanotube Layers. Chemistry - an Asian Journal, 2016, 11, 789-797.	3.3	34
372	Fast growth of TiO 2 nanotube arrays with controlled tube spacing based on a self-ordering process at two different scales. Electrochemistry Communications, 2017, 77, 98-102.	4.7	34
373	Black and white anatase, rutile and mixed forms: band-edges and photocatalytic activity. Chemical Communications, 2019, 55, 533-536.	4.1	34
374	Pore Formation on n-InP. Physica Status Solidi A, 2000, 182, 51-61.	1.7	33
375	Robust free standing flow-through TiO 2 nanotube membranes of pure anatase. Electrochemistry Communications, 2016, 71, 73-78.	4.7	33
376	A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting. ChemSusChem, 2016, 9, 2048-2053.	6.8	33
377	Optimizing TiO 2 nanotube morphology for enhanced photocatalytic H 2 evolution using single-walled and highly ordered TiO 2 nanotubes decorated with dewetted Au nanoparticles. Electrochemistry Communications, 2017, 79, 46-50.	4.7	33
378	Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting. ChemSusChem, 2018, 11, 1873-1879.	6.8	33

#	Article	IF	Citations
379	Spatially Confined Formation of Single Atoms in Highly Porous Carbon Nitride Nanoreactors. ACS Nano, 2021, 15, 7790-7798.	14.6	33
380	As a single atom Pd outperforms Pt as the most active co-catalyst for photocatalytic H2 evolution. IScience, 2021, 24, 102938.	4.1	33
381	Challenges in the Surface Analytical Characterisation of Anodic TiO2Films – a Review. Zeitschrift Fur Physikalische Chemie, 2005, 219, 1561-1582.	2.8	32
382	Current dependent formation of PEDOT inverse nanotube arrays. RSC Advances, 2013, 3, 2154.	3.6	32
383	High-power pulsed plasma deposition of hematite photoanode for PEC water splitting. Catalysis Today, 2014, 230, 8-14.	4.4	32
384	Hydrogen-treated hierarchical titanium oxide nanostructures for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2017, 169, 19-27.	6.2	32
385	Intrinsic Cu nanoparticle decoration of TiO2 nanotubes: A platform for efficient noble metal free photocatalytic H2 production. Electrochemistry Communications, 2019, 98, 82-86.	4.7	32
386	Constructing a photo-enzymatic cascade reaction and its <i>in situ</i> monitoring: enzymes hierarchically trapped in titania meso-porous MOFs as a new photosynthesis platform. Journal of Materials Chemistry A, 2021, 9, 14911-14919.	10.3	32
387	Ultra fast electrochromic switching of nanoporous tungsten–tantalum oxide films. Chemical Communications, 2011, 47, 1000-1002.	4.1	31
388	Anodic TiO2 nanotube membranes: Site-selective Pt-activation and photocatalytic H2 evolution. Electrochimica Acta, 2017, 258, 302-310.	5.2	31
389	Self-organized transparent 1D TiO 2 nanotubular photoelectrodes grown by anodization of sputtered and evaporated Ti layers: A comparative photoelectrochemical study. Chemical Engineering Journal, 2017, 308, 745-753.	12.7	31
390	Electrochemical formation of porous superlattices on n-type (1 0 0) InP. Surface Science, 2003, 547, 268-274.	1.9	30
391	Self-Ordered Nanoporous Nickel Oxide/Fluoride Composite Film with Strong Electrochromic Contrast. Electrochemical and Solid-State Letters, 2010, 13, C21.	2.2	30
392	Ideal Hexagonal Order: Formation of Self-Organized Anodic Oxide Nanotubes and Nanopores on a Ti–35Ta Alloy. Journal of the Electrochemical Society, 2010, 157, C409.	2.9	30
393	Ta doping for an enhanced efficiency of TiO2 nanotube based dye-sensitized solar cells. Electrochemistry Communications, 2012, 25, 11-14.	4.7	30
394	Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. Journal of Materials Chemistry, 2012, 22, 12792.	6.7	30
395	Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions. Electrochemistry Communications, 2013, 26, 1-4.	4.7	30
396	Controlled Thermal Annealing Tunes the Photoelectrochemical Properties of Nanochanneled Tinâ€Oxide Structures. ChemElectroChem, 2014, 1, 1133-1137.	3.4	30

#	Article	IF	Citations
397	TiO2nanotubes with laterally spaced ordering enable optimized hierarchical structures with significantly enhanced photocatalytic H2generation. Nanoscale, 2016, 8, 16868-16873.	5.6	30
398	Ptâ€Decorated gâ€C ₃ N ₄ /TiO ₂ Nanotube Arrays with Enhanced Visibleâ€Light Photocatalytic Activity for H ₂ Evolution. ChemistryOpen, 2016, 5, 197-200.	1.9	30
399	Predefined Initiation of Porous GaAs Using Focused Ion Beam Surface Sensitization. Journal of the Electrochemical Society, 1999, 146, 735-740.	2.9	29
400	Electron beam-induced modification of organic monolayers on $Si(111)$ surfaces used for selective electrodeposition. Electrochemistry Communications, 2004, 6, 153-157.	4.7	29
401	Initiation of tantalum oxide pores grown on tantalum by potentiodynamic anodic oxidation. Journal of Electroceramics, 2006, 16, 35-39.	2.0	29
402	Smooth titania nanotubes: Self-organization and stabilization of anatase phase. Journal of Non-Crystalline Solids, 2008, 354, 2190-2194.	3.1	29
403	Reliable Metal Deposition into TiO ₂ Nanotubes for Leakageâ€Free Interdigitated Electrode Structures and Use as a Memristive Electrode. Angewandte Chemie - International Edition, 2013, 52, 12381-12384.	13.8	29
404	Intracellular Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14980-14985.	8.0	29
405	High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO ₂ nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A, 2020, 8, 22773-22790.	10.3	29
406	AFM scratching and metal deposition through insulating layers on silicon. Surface Science, 2005, 597, 11-19.	1.9	28
407	Semimetallic TiO2 nanotubes: new interfaces for bioelectrochemical enzymatic catalysis. Journal of Materials Chemistry, 2012, 22, 4615.	6.7	28
408	Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte. Electrochemistry Communications, 2013, 34, 9-13.	4.7	28
409	Conductivity of anodic TiO ₂ nanotubes: Influence of annealing conditions. Physica Status Solidi - Rapid Research Letters, 2014, 8, 158-162.	2.4	28
410	Topographical study of TiO 2 nanostructure surface for photocatalytic hydrogen production. Electrochimica Acta, 2015, 179, 423-430.	5.2	28
411	Anodic Titanium Dioxide Nanotubes for Magnetically Guided Therapeutic Delivery. Scientific Reports, 2019, 9, 13439.	3.3	28
412	Growth and characterization of anodic oxides on Si(100) formed in 0.1 M hydrochloric acid. Journal of Applied Physics, 1996, 79, 8761-8769.	2.5	27
413	Gravity assisted growth of self-organized anodic oxide nanotubes on titanium. Electrochemistry Communications, 2008, 10, 1082-1086.	4.7	27
414	Capillary effects, wetting behavior and photo-induced tube filling of TiO ₂ nanotube layers. Nanotechnology, 2008, 19, 305710.	2.6	27

#	Article	IF	Citations
415	Properties of the Nanoporous Anodic Oxide Electrochemically Grown on Steel in Hot 50% NaOH. Journal of the Electrochemical Society, 2009, 156, C45.	2.9	27
416	ECM spreading behaviour on micropatterned TiO2 nanotube surfaces. Acta Biomaterialia, 2012, 8, 2639-2647.	8.3	27
417	NH3 treatment of TiO2 nanotubes: from N-doping to semimetallic conductivity. Chemical Communications, 2014, 50, 7960.	4.1	27
418	Conical-shaped titania nanotubes for optimized light management in DSSCs reach back-side illumination efficiencies > 8%. Journal of Materials Chemistry A, 2015, 3, 12603-12608.	10.3	27
419	Providing significantly enhanced photocatalytic H2 generation using porous PtPdAg alloy nanoparticles on spaced TiO2 nanotubes. International Journal of Hydrogen Energy, 2019, 44, 22962-22971.	7.1	27
420	Transparent and Low-Loss Luminescent Solar Concentrators Based on Self-Trapped Exciton Emission in Lead-Free Double Perovskite Nanocrystals. ACS Applied Energy Materials, 2021, 4, 6445-6453.	5.1	27
421	Adhesion of osteoblasts to a vertically aligned TiO2 nanotube surface. Mini-Reviews in Medicinal Chemistry, 2013, 13, 194-200.	2.4	27
422	Self-organization and zinc doping of Ga2O3 nanoporous architecture: A potential nano-photogenerator for hydrogen. Electrochemistry Communications, 2013, 35, 112-115.	4.7	26
423	TiO ₂ Nanotubes: Nitrogenâ€lon Implantation at Low Dose Provides Nobleâ€Metalâ€Free Photocatalytic H ₂ â€Evolution Activity. Angewandte Chemie, 2016, 128, 3827-3831.	2.0	26
424	Optimized Spacing between TiO ₂ Nanotubes for Enhanced Light Harvesting and Charge Transfer. ChemElectroChem, 2018, 5, 3183-3190.	3.4	26
425	Dewetted Au Nanoparticles on TiO ₂ Surfaces: Evidence of a Size-Independent Plasmonic Photoelectrochemical Response. Journal of Physical Chemistry C, 2019, 123, 16934-16942.	3.1	26
426	Reduced grey brookite for noble metal free photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 1168-1179.	10.3	26
427	Characterization of r.fsputtered iron oxide films for modeling passive films. Thin Solid Films, 1998, 312, 46-60.	1.8	25
428	Adsorption kinetics of alkanes on TiO2 nanotubesarray – structure–activity relationship. Surface Science, 2007, 601, 4620-4628.	1.9	25
429	MFI-type (ZSM-5) zeolite-filled TiO2nanotubes for enhanced photocatalytic activity. Nanotechnology, 2009, 20, 225607.	2.6	25
430	Protein Denaturation Detected by Time-of-Flight Secondary Ion Mass Spectrometry. Langmuir, 2011, 27, 7510-7515.	3.5	25
431	Visible light photo response from N-doped anodic niobium oxide after annealing in ammonia atmosphere. Electrochimica Acta, 2012, 62, 402-407.	5.2	25
432	Singleâ€Walled TiO ₂ Nanotubes: Enhanced Carrierâ€Transport Properties by TiCl ₄ Treatment. Chemistry - A European Journal, 2015, 21, 9204-9208.	3.3	25

#	Article	IF	Citations
433	Extracting the limiting factors in photocurrent measurements on TiO2 nanotubes and enhancing the photoelectrochemical properties by Nb doping. Electrochimica Acta, 2015, 176, 819-826.	5.2	25
434	High-temperature annealing of TiO ₂ nanotube membranes for efficient dye-sensitized solar cells. Semiconductor Science and Technology, 2016, 31, 014010.	2.0	25
435	TiO ₂ nanotubes with different spacing, Fe ₂ O ₃ decoration and their evaluation for Li-ion battery application. Nanotechnology, 2018, 29, 195402.	2.6	25
436	Depth elemental characterization of 1D self-aligned TiO2 nanotubes using calibrated radio frequency glow discharge optical emission spectroscopy (GDOES). Applied Surface Science, 2018, 442, 412-416.	6.1	25
437	Hematite dodecahedron crystals with high-index facets grown and grafted on one dimensional structures for efficient photoelectrochemical H2 generation. Nano Energy, 2018, 50, 331-338.	16.0	25
438	A Dewettedâ€Dealloyed Nanoporous Pt Coâ€Catalyst Formed on TiO ₂ Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H ₂ Production. Chemistry - an Asian Journal, 2020, 15, 301-309.	3.3	25
439	Morphology and Optical Properties of Highly Ordered TiO ₂ Nanotubes Grown in NH ₄ F/ <i>o</i> -H ₃ PO ₄ Electrolytes in View of Light-Harvesting and Catalytic Applications. ACS Applied Nano Materials, 2020, 3, 10646-10658.	5.0	25
440	Electrochemical Behavior of Fe in Phosphate Solutions Studied by In Situ Xâ€Ray Absorption Near Edge Structure. Journal of the Electrochemical Society, 1999, 146, 4087-4094.	2.9	24
441	Photoinduced release of active proteins from TiO2 surfaces. Electrochemistry Communications, 2009, 11, 1429-1433.	4.7	24
442	Formation of Selfâ€Organized Superlattice Nanotube Arrays – Embedding Heterojunctions into Nanotube Walls. Advanced Materials, 2010, 22, 4770-4774.	21.0	24
443	From anodic TiO2 nanotubes to hexagonally ordered TiO2 nanocolumns. Applied Surface Science, 2011, 257, 8177-8181.	6.1	24
444	Rapid Anodic Formation of High Aspect Ratio WO ₃ Layers with Selfâ€Ordered Nanochannel Geometry and Use in Photocatalysis. Chemistry - A European Journal, 2012, 18, 14622-14626.	3.3	24
445	Formation of Highly Ordered VO ₂ Nanotubular/Nanoporous Layers and Their Supercooling Effect in Phase Transitions. Advanced Materials, 2012, 24, 1571-1575.	21.0	24
446	Transport properties of single TiO2 nanotubes. Applied Physics Letters, 2013, 103, 173108.	3.3	24
447	Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps. Electrochemistry Communications, 2013, 34, 351-355.	4.7	24
448	Key factors for an improved lithium ion storage capacity of anodic TiO2 nanotubes. Electrochimica Acta, 2016, 198, 56-65.	5.2	24
449	Intrinsic AuPt-alloy particles decorated on TiO2 nanotubes provide enhanced photocatalytic degradation. Electrochimica Acta, 2018, 292, 865-870.	5.2	24
450	A direct synthesis of platinum/nickel co-catalysts on titanium dioxide nanotube surface from hydrometallurgical-type process streams. Journal of Cleaner Production, 2018, 201, 39-48.	9.3	24

#	Article	IF	Citations
451	Uncovering the Role of Trioctylphosphine on Colloidal and Emission Stability of Sb-Alloyed Cs ₂ NalnCl ₆ Double Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2021, 13, 47845-47859.	8.0	24
452	Halbleitereigenschaften von Passivfilmen und ihre Bedeutung f $\tilde{A}\frac{1}{4}$ r die Lochkorrosion. Materials and Corrosion - Werkstoffe Und Korrosion, 1991, 42, 203-207.	1.5	23
453	Prediction of negative index material lenses based on metalloâ€dielectric nanotubes. Physica Status Solidi - Rapid Research Letters, 2008, 2, 242-244.	2.4	23
454	Lithium-ion intercalation and electrochromism in ordered V2O5 nanoporous layers. Electrochemistry Communications, 2011, 13, 1198-1201.	4.7	23
455	Advanced Geometries of PEDOT Formed in Titania Nanotubes. ChemPhysChem, 2012, 13, 3790-3793.	2.1	23
456	In-situ Cr doped anodized TiO2 nanotubes with increased photocurrent response. Electrochimica Acta, 2014, 132, 410-415.	5.2	23
457	Nanoscale observation of initial stages of Cd-electrodeposition on Au(). Surface Science, 2003, 527, L165-L170.	1.9	22
458	Environmentally assisted cracking behavior of peak-aged 7010 aluminum alloy containing scandium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 3257-3262.	2.2	22
459	Scanning Electron Microscopy Observation of Nanoscopic Wetting of TiO[sub 2] Nanotubes and ODS Modified Nanotubes Using Ionic Liquids. Electrochemical and Solid-State Letters, 2010, 13, E11.	2.2	22
460	Controlling the Adsorption Kinetics via Nanostructuring: Pd Nanoparticles on TiO ₂ Nanotubes. Langmuir, 2010, 26, 14014-14023.	3.5	22
461	H ₂ Mapping on Pt-Loaded TiO ₂ Nanotube Gradient Arrays. Langmuir, 2014, 30, 15356-15363.	3.5	22
462	Lateral Spacing of TiO2 Nanotubes Modulates Osteoblast Behavior. Materials, 2019, 12, 2956.	2.9	22
463	Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. Current Medicinal Chemistry, 2020, 27, 854-902.	2.4	22
464	Laser-Assisted Maskless Cu Patterning on Porous Silicon. Electrochemical and Solid-State Letters, 2004, 7, G98.	2.2	21
465	Pore Morphology and Self-Organization Effects during Etching of n-Type GaP(100) in Bromide Solutions. Electrochemical and Solid-State Letters, 2005, 8, B72.	2.2	21
466	Photocatalytic properties of in situ doped TiO2-nanotubes grown by rapid breakdown anodization. Catalysis Science and Technology, 2013, 3, 1765.	4.1	21
467	Photocatalytic H2 production on self-decorated Au nanoparticles/TiO2 nanotubes under visible light. Electrochemistry Communications, 2014, 43, 105-108.	4.7	21
468	Self-organized cobalt fluoride nanochannel layers used as a pseudocapacitor material. Chemical Communications, 2014, 50, 7067-7070.	4.1	21

#	Article	IF	CITATIONS
469	Carbon-Decorated TiO ₂ Nanotube Membranes: A Renewable Nanofilter for Charge-Selective Enrichment of Proteins. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21997-22004.	8.0	21
470	Electric Field-Induced Osteogenic Differentiation on TiO ₂ Nanotubular Layer. Tissue Engineering - Part C: Methods, 2016, 22, 809-821.	2.1	21
471	Alternating Current Electrophoretic Deposition for the Immobilization of Antimicrobial Agents on Titanium Implant Surfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8533-8546.	8.0	21
472	Intrinsic Au-decoration on anodic TiO2 nanotubes grown from metastable Ti–Au sputtered alloys—High density co-catalyst decoration enhances the photocatalytic H2 evolution. Applied Materials Today, 2019, 14, 118-125.	4.3	21
473	Intrinsically Ru-Doped Suboxide TiO ₂ Nanotubes for Enhanced Photoelectrocatalytic H ₂ Generation. Journal of Physical Chemistry C, 2021, 125, 6116-6127.	3.1	21
474	Repair of thin thermally grown silicon dioxide by anodic oxidation. Electrochimica Acta, 2008, 53, 3395-3402.	5.2	20
475	Influence of Surface Condition on Nanoporous and Nanotubular Film Formation on Titanium. Journal of the Electrochemical Society, 2009, 156, K17.	2.9	20
476	Electrochemical Formation of Bismuth Phosphate Nanorods by Anodization of Bismuth. Electrochemical and Solid-State Letters, 2010, 13, C5.	2.2	20
477	Preparation and Adsorption Properties of Pd Nanoparticles Supported on TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2010, 114, 20146-20154.	3.1	20
478	Excited state properties of anodic TiO ₂ nanotubes. Applied Physics Letters, 2013, 102, 233109.	3.3	20
479	Ordered "superlattice―TiO2/Nb2O5nanotube arrays with improved ion insertion stability. Chemical Communications, 2013, 49, 460-462.	4.1	20
480	Controlling the diameter of aligned single-walled carbon nanotubes on quartz via catalyst reduction time. Carbon, 2015, 95, 452-459.	10.3	20
481	Largeâ€Diameter TiO ₂ Nanotubes Enable Wall Engineering with Conformal Hierarchical Decoration and Blocking Layers for Enhanced Efficiency in Dyeâ€Sensitized Solar Cells (DSSC). Chemistry - A European Journal, 2017, 23, 12995-12999.	3.3	20
482	Photocatalytic reduction and scavenging of $Hg(II)$ over templated-dewetted Au on TiO2 nanotubes. Photochemical and Photobiological Sciences, 2019, 18, 1046-1055.	2.9	20
483	A long-term stable aqueous aluminum battery electrode based on one-dimensional molybdenum–tantalum oxide nanotube arrays. Nanoscale, 2021, 13, 6087-6095.	5.6	20
484	A Few Pt Single Atoms Are Responsible for the Overall Co atalytic Activity in Pt/TiO ₂ Photocatalytic H ₂ Generation. Solar Rrl, 2022, 6, .	5.8	20
485	Pt Single Atoms on TiO ₂ Polymorphsâ€"Minimum Loading with a Maximized Photocatalytic Efficiency. Advanced Materials Interfaces, 2022, 9, .	3.7	20
486	Pore initiation and growth on n-InP(100). Electrochimica Acta, 2003, 48, 1301-1308.	5.2	19

#	Article	IF	CITATIONS
487	Nanopatterning of Si(111) surfaces by atomic force microscope scratching of an organic monolayer. Electrochemistry Communications, 2003, 5, 337-340.	4.7	19
488	Enhanced Openâ€Circuit Photopotential in Quasiâ€Solidâ€State Dyeâ€Sensitized Solar Cells Based on Polymer Redox Electrolytes Filled with Anodic Titania Nanotubes. Advanced Energy Materials, 2011, 1, 569-572.	19.5	19
489	Comparison of Anodic TiO ₂ â€Nanotube Membranes used for Frontsideâ€Illuminated Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2015, 2, 204-207.	3.4	19
490	TiO2 Nanotubes on Transparent Substrates: Control of Film Microstructure and Photoelectrochemical Water Splitting Performance. Catalysts, 2018, 8, 25.	3.5	19
491	Critical Factors in the Anodic Formation of Extremely Ordered Titania Nanocavities. Journal of the Electrochemical Society, 2019, 166, C3389-C3398.	2.9	19
492	A Photoelectrochemical Investigation of Passive Films Formed by Alternating Voltage Passivation. Journal of the Electrochemical Society, 1993, 140, L119-L121.	2.9	18
493	Laser-assisted nickel deposition onto porous silicon. Physica Status Solidi A, 2003, 197, 46-50.	1.7	18
494	Fast formation of aligned high-aspect ratio TiO2 nanotube bundles that lead to increased open circuit voltage when used in dye sensitized solar cells. Electrochemistry Communications, 2011, 13, 302-305.	4.7	18
495	Formation of Pt/Pb nanoparticles by electrodeposition and redox replacement cycles on fluorine doped tin oxide glass. Electrochimica Acta, 2013, 88, 278-286.	5.2	18
496	Fabrication of ideally ordered anodic porous TiO 2 by anodization of pretextured two-layered metals. Electrochemistry Communications, 2016, 72, 100-103.	4.7	18
497	Magn \tilde{A} ©li Phases Doped with Pt for Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 8399-8404.	5.1	18
498	Longâ€Living Holes in Grey Anatase TiO ₂ Enable Nobleâ€Metalâ€Free and Sacrificialâ€Agentâ€Free Water Splitting. ChemSusChem, 2020, 13, 4937-4944.	6.8	18
499	Formation and Properties of Porous GaAs. Materials Research Society Symposia Proceedings, 1996, 431, 439.	0.1	17
500	Electron-Beam Induced Nanomasking for Metal Electrodeposition on Semiconductor Surfaces. Journal of the Electrochemical Society, 2001, 148, C197.	2.9	17
501	Composition and growth of thin anodic oxides formed on InP (100). Electrochimica Acta, 2002, 47, 2733-2740.	5.2	17
502	Morphological characterization of porous InP superlattices. Science and Technology of Advanced Materials, 2004, 5, 119-123.	6.1	17
503	Visible-light-induced photocatalysis using self-organized TiO2nanotubes decorated with AgBr deposits. Semiconductor Science and Technology, 2011, 26, 092002.	2.0	17
504	Nitrogen-doped TiO2 mesosponge layers formed by anodization of nitrogen-containing Ti alloys. Journal of Solid State Electrochemistry, 2012, 16, 89-92.	2.5	17

#	Article	IF	CITATIONS
505	Electrochemical growth of self-organized TiO2–WO3 composite nanotube layers: effects of applied voltage and time. Journal of Applied Electrochemistry, 2013, 43, 9-13.	2.9	17
506	Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting. Research on Chemical Intermediates, 2015, 41, 9333-9341.	2.7	17
507	Doubleâ€Side Coâ€Catalytic Activation of Anodic TiO ₂ Nanotube Membranes with Sputterâ€Coated Pt for Photocatalytic H ₂ Generation from Water/Methanol Mixtures. Chemistry - an Asian Journal, 2017, 12, 314-323.	3.3	17
508	Capacitance response in an aqueous electrolyte of Nb2O5 nanochannel layers anodically grown in pure molten o-H3PO4. Electrochimica Acta, 2018, 281, 725-737.	5.2	17
509	Black TiO2 nanotubes: Efficient electrodes for triggering electric field-induced stimulation of stem cell growth. Acta Biomaterialia, 2019, 97, 681-688.	8.3	17
510	Conductive Cuâ€Doped TiO ₂ Nanotubes for Enhanced Photoelectrochemical Methanol Oxidation and Concomitant Hydrogen Generation. ChemElectroChem, 2019, 6, 1244-1249.	3.4	17
511	Thermalâ€Oxidative Growth of Substoichiometric WO _{3–<i>x</i>} Nanowires at Mild Conditions. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000235.	2.4	17
512	A facile "dark―deposition approach for Pt singleâ€atom trapping on facetted anatase TiO2 nanoflakes and use in photocatalytic H2 generation. Electrochimica Acta, 2022, 412, 140129.	5.2	17
513	Selective Electrodeposition of Cu Nanostructures on Focused Ion Beam Sensitized p-Si. Journal of the Electrochemical Society, 2002, 149, C432.	2.9	16
514	Growth and characterization of thin anodic oxide films on n-InSb(100) formed in aqueous solutions. Corrosion Science, 2004, 46, 2067-2079.	6.6	16
515	Modeling of Growth and Dissolution of Nanotubular Titania in Fluoride-Containing Electrolytes. Electrochemical and Solid-State Letters, 2009, 12, C5.	2.2	16
516	Surface modification of TiO2 nanotubes by low temperature thermal treatment in C2H2 atmosphere. Journal of Electroanalytical Chemistry, 2011, 662, 25-29.	3.8	16
517	Bottom sealing and photoelectrochemical properties of different types of anodic TiO2 nanotubes. Electrochimica Acta, 2013, 100, 229-235.	5. 2	16
518	Efficient photocatalysis on hierarchically structured TiO2 nanotubes with mesoporous TiO2 filling. Electrochemistry Communications, 2014, 42, 21-25.	4.7	16
519	Interface Chemistry and Molecular Bonding of Functional Ethoxysilane-Based Self-Assembled Monolayers on Magnesium Surfaces. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9006-9014.	8.0	16
520	Binding of human coronary artery endothelial cells to plasmaâ€treated titanium dioxide nanotubes of different diameters. Journal of Biomedical Materials Research - Part A, 2016, 104, 1113-1120.	4.0	16
521	Polydopamine-Coated TiO ₂ Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light. Journal of Nanoscience and Nanotechnology, 2016, 16, 5353-5358.	0.9	16
522	Noble metal free photocatalytic H2 generation on black TiO2: On the influence of crystal facets vs. crystal damage. Applied Physics Letters, 2017, 110, .	3.3	16

#	Article	IF	CITATIONS
523	Anodic nanoporous niobium oxide layers grown in pure molten ortho-phosphoric acid. Electrochimica Acta, 2020, 344, 136158.	5.2	16
524	Nontoxic Liquid-Infused Slippery Coating Prepared on Steel Substrates Inhibits Corrosion and Biofouling Adhesion. ACS Applied Materials & Earny; Interfaces, 2022, 14, 29386-29397.	8.0	16
525	Large Area Photocurrent Behavior and Laser Spot Scanning of Passivated Stainless Steels. Journal of the Electrochemical Society, 1994, 141, 362-366.	2.9	15
526	Surface topology of GaAs(100) after focused ion beam implantation of Si++. Applied Physics Letters, 1997, 70, 1305-1307.	3.3	15
527	Defect-Free AFM Scratching at the Si/SiO[sub 2] Interface Used for Selective Electrodeposition of Nanowires. Electrochemical and Solid-State Letters, 2004, 7, A41.	2.2	15
528	Nanopatterning of an organic monolayer covered Si (111) surfaces by atomic force microscope scratching. Electrochimica Acta, 2006, 51, 3674-3679.	5.2	15
529	Oxide Growth Efficiencies and Self-Organization of TiO ₂ Nanotubes. Journal of the Electrochemical Society, 2012, 159, H697-H703.	2.9	15
530	Robust Graphene Membranes in a Silicon Carbide Frame. ACS Nano, 2013, 7, 4441-4448.	14.6	15
531	A significant cathodic shift in the onset potential of photoelectrochemical water splitting for hematite nanostructures grown from Fe–Si alloys. Materials Horizons, 2014, 1, 344-347.	12.2	15
532	Open top anodic Ta3N5 nanotubes for higher solar water splitting efficiency. Electrochimica Acta, 2015, 182, 803-808.	5.2	15
533	Composition Gradients in Sputtered Ti–Au Alloys: Site-Selective Au Decoration of Anodic TiO ₂ Nanotubes for Photocatalytic H ₂ Evolution. ACS Applied Nano Materials, 2019, 2, 4018-4025.	5.0	15
534	Establishing High Photocatalytic H ₂ Evolution from Multiwalled Titanate Nanotubes. ChemCatChem, 2020, 12, 2951-2956.	3.7	15
535	Photoelectrochemical properties of "increasingly dark―TiO2 nanotube arrays. Journal of Electroanalytical Chemistry, 2020, 872, 114098.	3.8	15
536	Photocurrent conversion efficiency of TiO2 nanotube photoanodes in dependence of illumination intensity. Electrochimica Acta, 2021, 377, 137988.	5.2	15
537	Passivity of High Corrosion Resistant Cuâ€Alâ€Sn Alloys. Journal of the Electrochemical Society, 1993, 140, 2786-2790.	2.9	14
538	Porous Semiconductor Micropatterns Formed on Focussed Ion Beam Implants. Journal of Porous Materials, 2000, 7, 233-237.	2.6	14
539	Direct immobilization of DNA on diamond-like carbon nanodots. Nanotechnology, 2006, 17, 2004-2007.	2.6	14
540	Self-organized CdS microstructures by anodization of Cd in chloride containing Na2S solution. Electrochimica Acta, 2010, 55, 7766-7771.	5 . 2	14

#	Article	IF	CITATIONS
541	Influence of bioactive linker molecules on protein adsorption. Surface and Interface Analysis, 2014, 46, 193-197.	1.8	14
542	Aligned MoO _{<i>x</i>} /MoS ₂ Core–Shell Nanotubular Structures with a High Density of Reactive Sites Based on Selfâ€Ordered Anodic Molybdenum Oxide Nanotubes. Angewandte Chemie, 2016, 128, 12440-12444.	2.0	14
543	Amorphous Mo–Ta Oxide Nanotubes for Long-Term Stable Mo Oxide-Based Supercapacitors. ACS Applied Materials & Diterfaces, 2019, 11, 45665-45673.	8.0	14
544	Optimized Polymer Electrolyte Membrane Fuel Cell Electrode Using TiO ₂ Nanotube Arrays with Well-Defined Spacing. ACS Applied Nano Materials, 2020, 3, 4157-4170.	5.0	14
545	Photoelectrochemical performance of TiO2 photoanodes: Nanotube versus nanoflake electrodes. Electrochemistry Communications, 2021, 124, 106937.	4.7	14
546	Direct micropatterning of Si and GaAs using electrochemical development of focused ion beam implants. Applied Physics Letters, 1998, 73, 2600-2602.	3.3	13
547	Structural and optical properties of p-InP(1 0 0) anodized in halogenic acids. Electrochimica Acta, 2004, 49, 1743-1749.	5.2	13
548	Maskless patterning of various kinds of metals onto porous silicon. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1571-1575.	1.8	13
549	Selective etching of n-InP(100) triggered at surface dislocations induced by nanoscratching. Electrochimica Acta, 2006, 51, 2182-2187.	5.2	13
550	Nanostructured black cobalt coatings for solar absorbers. Surface and Interface Analysis, 2008, 40, 1493-1499.	1.8	13
551	Ordered nanopore boring in silicon: Metal-assisted etching using a self-aligned block copolymer Au nanoparticle template and gravity accelerated etching. Electrochemistry Communications, 2010, 12, 565-569.	4.7	13
552	N-Doped lepidocrocite nanotubular arrays: hydrothermal formation from anodic TiO2nanotubes and enhanced visible light photoresponse. Journal of Materials Chemistry A, 2013, 1, 1860-1866.	10.3	13
553	Improved photoelectrochemical water splitting of hematite nanorods thermally grown on Fe–Ti alloys. Electrochemistry Communications, 2014, 44, 49-53.	4.7	13
554	Synthesis of free-standing Ta ₃ N ₅ nanotube membranes and flow-through visible light photocatalytic applications. Chemical Communications, 2017, 53, 11763-11766.	4.1	13
555	Photoelectrocatalytic oxidation of As(III) over hematite photoanodes: A sensible indicator of the presence of highly reactive surface sites. Electrochimica Acta, 2018, 292, 828-837.	5. 2	13
556	Tunable Transformation Between SnS and SnO _x Nanostructures via Facile Anodization and Their Photoelectrochemical and Photocatalytic Performance. Solar Rrl, 2018, 2, 1800161.	5.8	13
557	Ordered Nanotubular Titanium Disulfide (TiS ₂) Structures: Synthesis and Use as Counter Electrodes in Dye Sensitized Solar Cells (DSSCs). Journal of the Electrochemical Society, 2019, 166, H3009-H3013.	2.9	13
558	Water Annealing of TiO ₂ Nanotubes for Photocatalysis Revisited. ChemElectroChem, 2020, 7, 2792-2796.	3.4	13

#	Article	ΙF	Citations
559	EC-STM tip induced Cd nanostructures on Au(111). Surface Science, 2004, 551, L33-L39.	1.9	12
560	Factors in Electrochemical Nanostructure Fabrication Using Electron-Beam Induced Carbon Masking. Journal of the Electrochemical Society, 2004, 151, G175.	2.9	12
561	Electron beam lithographic techniques and electrochemical reactions for the micro- and nanostructuring of surfaces under extreme conditions. Journal of Electroceramics, 2006, 16, 9-14.	2.0	12
562	Nitrates: A new class of electrolytes for the rapid anodic growth of selfâ€ordered oxide nanopore layers on Ti and Ta. Physica Status Solidi - Rapid Research Letters, 2011, 5, 394-396.	2.4	12
563	Front side illuminated dye-sensitized solar cells using anodic TiO2 mesoporous layers grown on FTO-glass. Electrochemistry Communications, 2012, 22, 157-161.	4.7	12
564	Self-organized, free-standing TiO2 nanotube membranes: Effect of surface electrokinetic properties on flow-through membranes. Electrochimica Acta, 2017, 245, 25-31.	5.2	12
565	Spaced TiO ₂ Nanotubes Enable Optimized Pt Atomic Layer Deposition for Efficient Photocatalytic H ₂ Generation. ChemistryOpen, 2018, 7, 797-802.	1.9	12
566	Photocatalytic H ₂ Evolution: Dealloying as Efficient Tool for the Fabrication of Rhâ€decorated TiO ₂ Nanotubes. ChemCatChem, 2019, 11, 6258-6262.	3.7	12
567	Sulfur and Ti ³⁺ coâ€Doping of TiO ₂ Nanotubes Enhance Photocatalytic H ₂ Evolution Without the Use of Any coâ€catalyst. Chemistry - an Asian Journal, 2019, 14, 2724-2730.	3.3	12
568	Photoelectrochemical performance of facet-controlled TiO ₂ nanosheets grown hydrothermally on FTO. Nanoscale Advances, 2021, 3, 747-754.	4.6	12
569	Novel pore shape and self-organization effects in n-GaP(111). Journal of Solid State Electrochemistry, 2009, 13, 807-812.	2.5	11
570	Molybdenum dichalcogenide nanotube arrays for hydrogen-evolution-reaction catalysis: Synergistic effects of sulfur and selenium in a core-shell tube wall. Electrochemistry Communications, 2017, 82, 112-116.	4.7	11
571	Photocatalytic Hydrogen Generation from Waterâ€Annealed TiO ₂ Nanotubes with White and Grey Modification. ChemElectroChem, 2021, 8, 240-245.	3.4	11
572	Electron-beam induced carbon deposition used as a mask for cadmium sulfide deposition on Si(100). Electrochimica Acta, 2001, 47, 891-897.	5.2	10
573	Selective Electrodeposition of Micropatterns on Predefined Surface Defects on p-Si(100). Journal of the Electrochemical Society, 2001, 148, C177.	2.9	10
574	High intensity and oscillatory electroluminescence observed during porous etching of GaP in HBr and HF electrolytes. Chemical Physics Letters, 2005, 414, 47-50.	2.6	10
575	Electrochemical wettability control on conductive TiO2 nanotube surfaces modified with a ferrocene redox system. Electrochemistry Communications, 2009, 11, 2000-2003.	4.7	10
576	Throughâ€Hole, Selfâ€Ordered Nanoporous Oxide Layers on Titanium, Niobium and Titanium–Niobium Alloys in Aqueous and Organic Nitrate Electrolytes. ChemistryOpen, 2012, 1, 21-25.	1.9	10

#	Article	IF	CITATIONS
577	Embedded Palladium Activation as a Facile Method for TiO ₂ â€Nanotube Nanoparticle Decoration: Cu ₂ Oâ€Induced Visibleâ€Light Photoactivity. ChemistryOpen, 2013, 2, 21-24.	1.9	10
578	Anodic TiO ₂ nanotube arrays directly grown on quartz glass used in front―and backâ€side irradiation configuration for photocatalytic H ₂ generation. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2733-2740.	1.8	10
579	Optimized FTO seeding enables the growth of highlyefficient Ta-doped TiO2 nanorod photoanodes. Chemical Communications, 2017, 53, 10050-10053.	4.1	10
580	Metal–Phosphate Bilayers for Anatase Surface Modification. ACS Applied Materials & Diterfaces, 2018, 10, 6661-6672.	8.0	10
581	Fe2O3 Blocking Layer Produced by Cyclic Voltammetry Leads to Improved Photoelectrochemical Performance of Hematite Nanorods. Surfaces, 2019, 2, 131-144.	2.3	10
582	Enhancing Photoelectrochemical Energy Storage by Large-Area CdS-Coated Nickel Nanoantenna Arrays. ACS Applied Energy Materials, 2021, 4, 11367-11376.	5.1	10
583	Self-assembled monolayers enhance the efficiency of Pt single atom co-catalysts in photocatalytic H2 generation. Electrochemistry Communications, 2021, 133, 107166.	4.7	10
584	Physical and Electrical Characterization of Thin Anodic Oxides on Si(100). Journal of the Electrochemical Society, 1995, 142, 3933-3940.	2.9	9
585	Nature and growth of anodic and thermal oxides on GaAs and AlxGa1â^x As. Corrosion Science, 1999, 41, 1467-1474.	6.6	9
586	Self-organized Nucleation of Cd Island Arrays on Reconstructed Au(111) Electrode Surfaces by Underpotential Deposition. Electrochemical and Solid-State Letters, 2003, 6, C63.	2.2	9
587	Tip-Induced Nanostructuring of Au[sub 3]Cu(001) with an Electrochemical Scanning Tunneling Microscope. Journal of the Electrochemical Society, 2003, 150, C111.	2.9	9
588	Bulk micromachining of silicon using electron-beam-induced carbonaceous nanomasking. Nanotechnology, 2006, 17, 5363-5366.	2.6	9
589	Preparation of Organized Ti Nanorods by Successive Electrochemical Processes in Aqueous Solution and Molten Salt. Electrochemical and Solid-State Letters, 2008, 11, C51.	2.2	9
590	Self-organized Anodic TiO2-nanotubes in Fluoride Free Electrolytes. ECS Transactions, 2009, 16, 369-373.	0.5	9
591	Voltage Induced Self-Peeling of Initiation Layers on Self-Organized TiO[sub 2]–WO[sub 3] Nanotubes and Formation of Oxide Nanosheet Rolls. Electrochemical and Solid-State Letters, 2010, 13, K73.	2.2	9
592	Photoelectrochemical Poperties of Anodic TiO2 Nanosponge Layers. ECS Electrochemistry Letters, 2012, 2, H9-H11.	1.9	9
593	Electrochemically Assisted Self-Assembling of ZnF2-ZnO Nanospheres: Formation of Hierarchical Thin Porous Films. ECS Electrochemistry Letters, 2013, 3, E1-E3.	1.9	9
594	Templating Using Selfâ€Aligned TiO ₂ Nanotube Stumps: Highly Ordered Metal and Polymer Bumped Arrays. ChemElectroChem, 2014, 1, 64-66.	3.4	9

#	Article	IF	CITATIONS
595	Self-induced current oscillations during anodization of Ti in LA containing DMSO electrolyte. Electrochemistry Communications, 2016, 65, 18-22.	4.7	9
596	Reactivity of TiO ₂ Nanotubeâ€Supported Platinum Particles in the CO Oxidation Reaction. ChemCatChem, 2017, 9, 564-572.	3.7	9
597	Post treatments effect on TiZr nanostructures fabricated via anodizing. Journal of Materials Research and Technology, 2019, 8, 5802-5812.	5 . 8	9
598	A High-Field Anodic NiO Nanosponge with Tunable Thickness for Application in p-Type Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 7865-7872.	5.1	9
599	Alkali Metal Cation Incorporation in Conductive TiO ₂ Nanoflakes with Improved Photoelectrochemical H ₂ Generation. ChemElectroChem, 2020, 7, 1699-1706.	3.4	9
600	Multi-Leg TiO2 Nanotube Photoelectrodes Modified by Platinized Cyanographene with Enhanced Photoelectrochemical Performance. Catalysts, 2020, 10, 717.	3. 5	9
601	Improvement of polymer properties for powder bed fusion by combining in situ PECVD nanoparticle synthesis and dry coating. Plasma Processes and Polymers, 2021, 18, 2000247.	3.0	9
602	Thermal Ramping Rate during Annealing of TiO ₂ Nanotubes Greatly Affects Performance of Photoanodes. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100040.	1.8	9
603	A light reflectance technique for thickness measurements of passive films. Electrochimica Acta, 1998, 43, 635-637.	5.2	8
604	Maskless deposition of gold patterns on silicon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 3198.	1.6	8
605	Selective Growth of Porous Silicon on Focused Ion Beam Patterns. Journal of the Electrochemical Society, 2000, 147, 2993.	2.9	8
606	Electron Beam Induced Writing of Corrosion Protection. Electrochemical and Solid-State Letters, 2003, 6, C1.	2.2	8
607	Steel corrosion in alkaline batteries. Electrochimica Acta, 2009, 54, 5216-5222.	5.2	8
608	Toward Self-Ordered Silica Nanotubes by Electrochemical Anodization of Si(100). Electrochemical and Solid-State Letters, 2010, 13, C25.	2.2	8
609	Anodic Formation of Ti–V Binary Oxide Mesosponge Layers for Supercapacitor Applications. Chemistry - an Asian Journal, 2011, 6, 2916-2919.	3.3	8
610	Photocatalysis vs. anodic-breakdown catalysis on TiO2 layers. Electrochimica Acta, 2012, 66, 7-11.	5.2	8
611	Formation of aligned nanoporous/nanotubular layers of vanadium oxy-nitrides. Electrochemistry Communications, 2014, 43, 31-35.	4.7	8
612	Photo-Electrochemical Solar-to-Fuel Energy Conversion by Hematite-Based Photo-Anodes – The Role of 1D Nanostructuring. Zeitschrift Fur Physikalische Chemie, 2020, 234, 615-631.	2.8	8

#	Article	IF	Citations
613	Optical properties of silicon-implanted polycrystalline diamond membranes. Carbon, 2021, 174, 295-304.	10.3	8
614	Lightâ€Induced Migration of Spin Defects in TiO ₂ Nanosystems and their Contribution to the H ₂ Evolution Catalysis from Water. ChemSusChem, 2021, 14, 4408-4414.	6.8	8
615	Metallic nanoparticle-on-mirror: Multiple-band light harvesting and efficient photocurrent generation under visible light irradiation. Nano Energy, 2021, 90, 106609.	16.0	8
616	Characterisation of r.f. sputtered Fe–Cr-oxide films. Vacuum, 1999, 52, 477-483.	3.5	7
617	Anodic Porous and Tubular Oxide Layers on Ti Alloys. ECS Transactions, 2009, 16, 359-367.	0.5	7
618	Formation of magnetic aluminium oxyhydroxide nanorods and use for hyperthermal effects. Nanotechnology, 2011, 22, 115601.	2.6	7
619	Evaluation of nanostructured vanadium(v) oxide in catalytic oxidations. Catalysis Science and Technology, 2013, 3, 2610.	4.1	7
620	Electrical transport properties of polycrystalline and amorphous TiO 2 Âsingle nanotubes. Nano Structures Nano Objects, 2017, 10, 51-56.	3.5	7
621	Electrochemically Faceted Bambooâ€type TiO ₂ Nanotubes Provide Enhanced Openâ€Circuit Hydrogen Evolution. ChemElectroChem, 2019, 6, 114-120.	3.4	7
622	Anodic self-assembly method for synthesizing hierarchical FeS/FeOx hollow nanospheres. Journal of Power Sources, 2021, 484, 229268.	7.8	7
623	A drastic improvement in photocatalytic H ₂ production by TiO ₂ nanosheets grown directly on Ta ₂ O ₅ substrates. Nanoscale, 2021, 13, 12750-12756.	5.6	7
624	Nanoscale Assembly of BiVO4/CdS/CoOx Core–Shell Heterojunction for Enhanced Photoelectrochemical Water Splitting. Catalysts, 2021, 11, 682.	3.5	7
625	Chapter 3. Electrochemistry at TiO2 nanotubes and other semiconductor nanostructures. SPR Electrochemistry, 0, , 87-131.	0.7	7
626	Hydrogenated anatase TiO ₂ single crystals: defects formation and structural changes as microscopic origin of co-catalyst free photocatalytic H ₂ evolution activity. Journal of Materials Chemistry A, 2021, 9, 24932-24942.	10.3	7
627	Li+ doped anodic TiO2 nanotubes for enhanced efficiency of Dye-sensitized solar cells. Surface Science, 2022, 718, 122012.	1.9	7
628	Printing halftone photographic images on diamond by focused silicon ion implantation. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 2358.	1.6	6
629	Formation of porous layers on InSb(100) by anodization. Physica Status Solidi A, 2003, 197, 71-76.	1.7	6
630	Anodic Porous Zirconium Oxide Prepared in Sulfuric Acid Electrolytes. Materials Science Forum, 2006, 512, 205-210.	0.3	6

#	Article	IF	CITATIONS
631	Self-Organized Oxide Nanotube Layers on Titanium and Other Transition Metals. Nanostructure Science and Technology, 2009, , 435-466.	0.1	6
632	Transparent Self-Ordered Niobium-Oxide Nanochannel Layers Formed on Conducting Glass by Total Anodization of Thin Metal Films in Glycerol/Phosphate Electrolyte. ECS Electrochemistry Letters, 2012, 2, C4-C6.	1.9	6
633	Signal Amplification Strategy Based on TiO ₂ â€Nanotube Layers and Nanobeads Carrying Quantum Dots for Electrochemiluminescent Immunosensors. ChemistryOpen, 2013, 2, 93-98.	1.9	6
634	Tuning Anatase Surface Reactivity toward Carboxylic Acid Anchor Groups. Langmuir, 2017, 33, 13913-13922.	3.5	6
635	Efficient Preparation Process for TiO ₂ Through-Hole Membranes with Ordered Hole Arrangements. Journal of the Electrochemical Society, 2018, 165, E763-E767.	2.9	6
636	Fabrication of ideally ordered TiO $<$ sub $>$ 2 $<$ /sub $>$ through-hole membranes by two-layer anodization. RSC Advances, 2020, 10, 37657-37661.	3.6	6
637	Grey facet-controlled anatase nanosheets for photocatalytic H ₂ evolution without co-catalyst. JPhys Energy, 2021, 3, 034003.	5.3	6
638	Facile Approach of Direct Sulfidation of FTO to Form Vertically Aligned SnS ₂ Nanoflake Photoanodes for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 8395-8400.	5.1	6
639	Facetâ€Control versus Coâ€Catalystâ€Control in Photocatalytic H ₂ Evolution from Anatase TiO ₂ Nanocrystals. ChemistryOpen, 2022, 11, e202200010.	1.9	6
640	Photocatalytic Synthesis of Oxidized Graphite Enabled by Grey TiO ₂ and Direct Formation of a Visibleâ€Lightâ€Active Titania/Graphene Oxide Nanocomposite. ChemPhotoChem, 2022, 6, .	3.0	6
641	Tip-induced nanostructuring of alloy surfaces with an electrochemical scanning tunneling microscope. Surface Science, 2005, 597, 20-25.	1.9	5
642	Formation of Self-Organized Zirconia Nanostructure. ECS Transactions, 2006, 1, 351-357.	0.5	5
643	Morphology of porous n-GaP anodically formed in different mineral acids. Journal of Electroceramics, 2006, 16, 23-28.	2.0	5
644	Selective electrochemical gold deposition onto p-Si (1 0 0) surfaces. Journal Physics D: Applied Physics, 2008, 41, 175301.	2.8	5
645	Hierarchical decoration of anodic TiO2 nanorods for enhanced photocatalytic degradation properties. Electrochimica Acta, 2015, 155, 244-250.	5.2	5
646	Could Titanium Dioxide Nanotubes Represent a Viable Support System for Appropriate Cells in Vascular Implants?. Advances in Biomembranes and Lipid Self-Assembly, 2017, 25, 1-39.	0.6	5
647	Spaced Titania Nanotube Arrays Allow the Construction of an Efficient Nâ€Doped Hierarchical Structure for Visibleâ€Light Harvesting. ChemistryOpen, 2018, 7, 131-135.	1.9	5
648	Hierarchical Anodic TiO ₂ Nanostructures Formed in Ethylene Glycol/oâ€H ₃ PO ₄ Electrolytes for Direct Photocatalysis. ChemElectroChem, 2020, 7, 2859-2863.	3.4	5

#	Article	IF	CITATIONS
649	Self-assembly of a Ni(I)-photocatalyst for plain water splitting without sacrificial agents. Electrochemistry Communications, 2021, 122, 106909.	4.7	5
650	DC sputter deposited TiO2 layers on FTO: towards a maximum photoelectrochemical response of photoanodes. Journal of Materials Science, 2022, 57, 12960-12970.	3.7	5
651	lon projection sensitized selective Cu electroplating on uncoated p-Si. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2713.	1.6	4
652	Resistless deposition of metallic nanostructures on ion projection sensitized p-Si. Microelectronic Engineering, 2003, 67-68, 175-181.	2.4	4
653	Electron beam-treated organic monolayers as a negative resist for Cu immersion plating on Si. Journal of Solid State Electrochemistry, 2004, 8, 772.	2.5	4
654	Tailored Electrochemical Surface Modification of Semiconductors. Materials Science Forum, 2006, 512, 129-136.	0.3	4
655	Nonaqueous Viscous Electrolytes for Growth of Anodic Titania Nanotubes. Materials Research Society Symposia Proceedings, 2006, 963, 1.	0.1	4
656	Oxidation of III–V semiconductors. Corrosion Science, 2007, 49, 31-41.	6.6	4
657	Metal-insulator transition in nanocomposite VO _x films formed by anodic electrodeposition. Applied Physics Letters, 2013, 103, 202102.	3.3	4
658	Design of selfâ€assembled TiO ₂ architectures: Towards hybrid nanotubular interfaces. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 938-945.	1.8	4
659	Tantalum nitride nanotube photoanodes: Establishing a beneficial back-contact by lift-off and transfer to titanium nitride layer. Electrochemistry Communications, 2016, 72, 27-31.	4.7	4
660	Key Oxidation Parameters that Influence Photo-Induced Properties and Applications of Anodic Titanium Oxides. Journal of the Electrochemical Society, 2016, 163, H119-H127.	2.9	4
661	Macrophage-like Cells Are Responsive to Titania Nanotube Intertube Spacing—An In Vitro Study. International Journal of Molecular Sciences, 2022, 23, 3558.	4.1	4
662	Light Induced Inhibition of Local Passivity Breakdown. Materials Science Forum, 1995, 185-188, 1065-1074.	0.3	3
663	Red luminescence from a focused ion beam modified silicon surface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 3301.	1.6	3
664	Selective porosification of n-lnP(100) after focused ion beam implantation of Si. Physica Status Solidi A, 2003, 197, 180-185.	1.7	3
665	Electrochemical structuring of mechanically activated n-InP(100) surfaces. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3359-3364.	0.8	3
666	Anodic Oxide Nanotubes on Ti Alloys. ECS Transactions, 2006, 3, 365-374.	0.5	3

#	Article	IF	Citations
667	Porous anodic alumina: Amphiphilic and magnetically guidable micro-rafts. Electrochemistry Communications, 2011, 13, 934-937.	4.7	3
668	Palladium Activated Decoration of TiO2 Nanotubes by Copper Nanoparticles and Enhanced Photocatalytic Properties. ECS Electrochemistry Letters, 2012, 1, H29-H31.	1.9	3
669	Boronâ€Doped Diamond as an Efficient Back Contact to Thermally Grown TiO 2 Photoelectrodes. ChemElectroChem, 2019, 6, 4545-4549.	3.4	3
670	Dye-sensitized TiO2 nanotube membranes act as a visible-light switchable diffusion gate. Nanoscale Advances, 2019, 1, 4844-4852.	4.6	3
671	Light-induced In-situ Ti ³⁺ Formation in TiO ₂ Nanosheets for Photocatalytic Hydrogen Evolution. IOP Conference Series: Materials Science and Engineering, 2020, 908, 012001.	0.6	3
672	Thickness measurements of thin anodic oxides on GaAs using atomic force microscopy, profilometry, and secondary ion mass spectrometry. Applied Physics Letters, 1996, 68, 2675-2677.	3.3	2
673	Cu-Nanoclusters Produced on AuCu-Alloys with an Electrochemical Scanning Tunneling Microscope. Materials Research Society Symposia Proceedings, 2001, 704, 581.	0.1	2
674	Selective Titanium Oxide Formation Using Electron-beam Induced Carbon Deposition Technique. Materials Research Society Symposia Proceedings, 2002, 741, 451.	0.1	2
675	Pore formation on p-type InP(100). Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1446-1450.	1.8	2
676	Self-Organized Nanoporous Valve Metal Oxide Layers. , 2006, , 187-192.		2
677	Oxygen Reduction on Passive Steel and Cr Rich Alloys for Concrete Reinforcement. , 2006, , 305-310.		2
678	Organic monolayers as resist layers for Cu deposition on Si (111) surfaces. Journal of Electroceramics, 2006, 16, 71-77.	2.0	2
679	Potential influence on copper electrodeposition on scratched silicon surfaces. Journal of Electroceramics, 2006, 16, 65-70.	2.0	2
680	Reactivity Screening of Anatase TiO ₂ Nanotubes Array and Anatase Thin Films: A Surface Chemistry Point of View. ACS Symposium Series, 2008, , 139-151.	0.5	2
681	Frontâ€side illuminated dyeâ€sensitized solar cells based on bundle shaped titania nanotube membranes. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 193-198.	1.8	2
682	Adsorption characteristics of a Znâ€Porphyrin on MgO surfaces. Surface and Interface Analysis, 2013, 45, 194-197.	1.8	2
683	Easy Room Temperature Synthesis of High Surface Area Anatase Nanowires with Different Morphologies. ChemistryOpen, 2019, 8, 817-821.	1.9	2
684	Self-assembly and activation of a titania-nanotube based photocatalyst for H ₂ evolution. Chemical Communications, 2021, 57, 7120-7123.	4.1	2

#	Article	IF	CITATIONS
685	Comparison of the sputtered TiO ₂ anatase and rutile thin films as electron transporting layers in perovskite solar cells. Nano Select, 2022, 3, 990-997.	3.7	2
686	Nanotube diameter directs stem cell fate. Journal of Stem Cells and Regenerative Medicine, 2007, 2, 168.	2.2	2
687	Magnetiteâ€free Snâ€doped hematite nanoflake layers for enhanced photoelectrochemical water splitting. ChemElectroChem, 0, , .	3.4	2
688	Integrated Ferroelectrics, 1999, 23, 191-198.	0.7	1
689	Controlled and Selective Aggregation of Submicrometer Cu-Crystallites on FIB Sensitized p-Si. Materials Research Society Symposia Proceedings, 2001, 704, 7101.	0.1	1
690	Nanoscale Electrochemical Deposition of Metals on FIB Sensitized p-Type Silicon. Materials Research Society Symposia Proceedings, 2001, 705, 431.	0.1	1
691	A Semiconductor Nano-Patterning Approach Using AFM-Scratching Through Oxide Thin Layers. Materials Research Society Symposia Proceedings, 2002, 740, 1.	0.1	1
692	Anodization of Ti: Formation of Self-Organized Titanium Oxide Nanotube-Layers., 2006,, 179-186.		1
693	Electrochemical trench etching of silicon triggered via mechanical nanocontacts. Electrochimica Acta, 2007, 53, 758-762.	5.2	1
694	Electrochemical Monitoring of the Formation of Self Organized Monolayers: Octadecylphosphonic Acid on Anodically Grown Titanium Dioxide. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2009, 60, 170-173.	0.2	1
695	TiO2 nanotube micropatterns – highly selective model surfaces. Biomedizinische Technik, 2012, 57, .	0.8	1
696	Adhesion of Osteoblasts to a Vertically Aligned TiO2 Nanotube Surface. Mini-Reviews in Medicinal Chemistry, 2013, 13, 194-200.	2.4	1
697	Template-Dewetted Au Nanoparticles on TiO ₂ Nanocavities for Photocatalytic Reduction and Scavenging of Hg(II). ECS Meeting Abstracts, 2020, MA2020-01, 2717-2717.	0.0	1
698	Light Emitting Micropatterns of Porous Semiconductors. Materials Research Society Symposia Proceedings, 1998, 536, 3.	0.1	0
699	Visible Light Emission from Silicon Nanostructures. Physica Status Solidi (B): Basic Research, 1999, 215, 297-300.	1.5	0
700	Cathodic electrodeposition of mixed oxide/hydroxide precursor for lead-zirconate titanate thin films. Ferroelectrics, 1999, 225, 311-318.	0.6	0
701	Magnetically Guided TiO2 Nanotubes for Site Selective Photoinduced Drug Release. ECS Meeting Abstracts, 2009, , .	0.0	0
702	Synergistic control of mesenchymal stem cell differentiation by nanotopography and immobilized BMP-2 on TiO2 nanotubes. Biomedizinische Technik, 2012, 57, .	0.8	0

#	Article	lF	CITATIONS
703	Easy Room Temperature Synthesis of High Surface Area Anatase Nanowires with Different Morphologies. ChemistryOpen, 2019, 8, 813-813.	1.9	0
704	One-dimensional TiO2 nanotube–based photocatalysts: enhanced performance by site-selective decoration. Interface Science and Technology, 2020, 31, 231-264.	3.3	0
705	MoS2 Decorated on Different Metal Oxide Nanotubular Structures with a High Density of Reactive Sites for HER Reactions. ECS Meeting Abstracts, 2018, , .	0.0	0
706	(Invited) A New Perspective for Photoelectrochemical Water Splitting: Black TiO2 Nanotubes. ECS Meeting Abstracts, 2019, , .	0.0	0
707	(Invited) TiO2 Nanotube Arrays: Photoelectrochemical and Photocatalytic Applications. ECS Meeting Abstracts, 2019, , .	0.0	0
708	Black Ru-doped TiO2 Nanotubes as Efficient Photoanode in Photoelectrochemical Water Splitting. , 0, ,		0
709	Self-Organizing Anodization in Pure Molten Ortho-Phosphoric Acid: Nanoporous Niobium Oxide Layers. ECS Meeting Abstracts, 2020, MA2020-01, 2831-2831.	0.0	0
710	Dewetting-Alloying of Nicu Bilayers on TiO2 Surfaces for Noble Metal-Free Photocatalytic H2 Evolution. ECS Meeting Abstracts, 2020, MA2020-01, 892-892.	0.0	0
711	Noble-Metal-Free Photocatalytic Hydrogen Evolution Activity:Defect Engineering in TiO2 Nanotubes. ECS Meeting Abstracts, 2018, MA2018-01, 1899-1899.	0.0	0