
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6801399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature, 2010, 464, 903-907.	27.8	537
2	Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. Journal of Neuroscience Methods, 2006, 154, 204-224.	2.5	266
3	Single-Trial Learning of Novel Stimuli by Individual Neurons of the Human Hippocampus-Amygdala Complex. Neuron, 2006, 49, 805-813.	8.1	254
4	Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. Journal of Vision, 2008, 8, 2.	0.3	222
5	Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nature Neuroscience, 2017, 20, 590-601.	14.8	185
6	Selective visual attention enables learning and recognition of multiple objects in cluttered scenes. Computer Vision and Image Understanding, 2005, 100, 41-63.	4.7	184
7	Synthesizing cognition in neuromorphic electronic systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3468-76.	7.1	119
8	Representation of retrieval confidence by single neurons in the human medial temporal lobe. Nature Neuroscience, 2015, 18, 1041-1050.	14.8	118
9	Neurons in the human amygdala selective for perceived emotion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3110-9.	7.1	109
10	The primate amygdala in social perception – insights from electrophysiological recordings and stimulation. Trends in Neurosciences, 2015, 38, 295-306.	8.6	108
11	The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nature Communications, 2017, 8, 14821.	12.8	106
12	Single-Unit Responses Selective for Whole Faces in the Human Amygdala. Current Biology, 2011, 21, 1654-1660.	3.9	96
13	Activity of human hippocampal and amygdala neurons during retrieval of declarative memories. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 329-334.	7.1	90
14	Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. Journal of Vision, 2013, 13, 11-11.	0.3	84
15	Single-Neuron Correlates of Error Monitoring and Post-Error Adjustments in Human Medial Frontal Cortex. Neuron, 2019, 101, 165-177.e5.	8.1	84
16	Flexible recruitment of memory-based choice representations by the human medial frontal cortex. Science, 2020, 368, .	12.6	82
17	Probabilistic modeling of eye movement data during conjunction search via feature-based attention. Journal of Vision, 2007, 7, 5.	0.3	75
18	Single-Neuron Correlates of Atypical Face Processing in Autism. Neuron, 2013, 80, 887-899.	8.1	74

#	Article	IF	CITATIONS
19	State-Dependent Computation Using Coupled Recurrent Networks. Neural Computation, 2009, 21, 478-509.	2.2	71
20	Single-Neuron Representation of Memory Strength and Recognition Confidence in Left Human Posterior Parietal Cortex. Neuron, 2018, 97, 209-220.e3.	8.1	70
21	Human Episodic Memory Retrieval Is Accompanied by a Neural Contiguity Effect. Journal of Neuroscience, 2018, 38, 4200-4211.	3.6	67
22	Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation. Current Biology, 2018, 28, 1333-1343.e4.	3.9	65
23	Fixations Gate Species-Specific Responses to Free Viewing of Faces in the Human and Macaque Amygdala. Cell Reports, 2017, 18, 878-891.	6.4	64
24	Between persistently active and activityâ€silent frameworks: novel vistas on the cellular basis of working memory. Annals of the New York Academy of Sciences, 2020, 1464, 64-75.	3.8	60
25	Working Memory Load-related Theta Power Decreases in Dorsolateral Prefrontal Cortex Predict Individual Differences in Performance. Journal of Cognitive Neuroscience, 2019, 31, 1290-1307.	2.3	55
26	Collective Stability of Networks of Winner-Take-All Circuits. Neural Computation, 2011, 23, 735-773.	2.2	51
27	Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation. Neuron, 2021, 109, 869-881.e6.	8.1	51
28	Neurons detect cognitive boundaries to structure episodic memories in humans. Nature Neuroscience, 2022, 25, 358-368.	14.8	51
29	Combined Phase-Rate Coding by Persistently Active Neurons as a Mechanism for Maintaining Multiple Items in Working Memory in Humans. Neuron, 2020, 106, 256-264.e3.	8.1	47
30	The geometry of domain-general performance monitoring in the human medial frontal cortex. Science, 2022, 376, eabm9922.	12.6	41
31	Cellular Classes in the Human Brain Revealed InÂVivo by Heartbeat-Related Modulation of the Extracellular Action Potential Waveform. Cell Reports, 2020, 30, 3536-3551.e6.	6.4	38
32	The relation of phase noise and luminance contrast to overt attention in complex visual stimuli. Journal of Vision, 2006, 6, 1-1.	0.3	35
33	Learning and stabilization of winner-take-all dynamics through interacting excitatory and inhibitory plasticity. Frontiers in Computational Neuroscience, 2014, 8, 68.	2.1	35
34	The Architecture of Human Memory: Insights from Human Single-Neuron Recordings. Journal of Neuroscience, 2021, 41, 883-890.	3.6	35
35	Dataset of human medial temporal lobe single neuron activity during declarative memory encoding and recognition. Scientific Data, 2018, 5, 180010.	5.3	32
36	Activated Bone Marrow-Derived Macrophages Eradicate Alzheimer's-Related Aβ42 Oligomers and Protect Synapses. Frontiers in Immunology, 2020, 11, 49.	4.8	32

#	Article	IF	CITATIONS
37	Extent of Single-Neuron Activity Modulation by Hippocampal Interictal Discharges Predicts Declarative Memory Disruption in Humans. Journal of Neuroscience, 2020, 40, 682-693.	3.6	30
38	Ethical commitments, principles, and practices guiding intracranial neuroscientific research in humans. Neuron, 2022, 110, 188-194.	8.1	29
39	Encoding of Target Detection during Visual Search by Single Neurons in the Human Brain. Current Biology, 2018, 28, 2058-2069.e4.	3.9	28
40	A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals. Journal of Neuroscience Methods, 2013, 215, 139-155.	2.5	25
41	Safety and Utility of Hybrid Depth Electrodes for Seizure Localization and Single-Unit Neuronal Recording. Stereotactic and Functional Neurosurgery, 2018, 96, 311-319.	1.5	25
42	Testing Models of Human Declarative Memory at the Single-Neuron Level. Trends in Cognitive Sciences, 2019, 23, 510-524.	7.8	24
43	Value-Related Neuronal Responses in the Human Amygdala during Observational Learning. Journal of Neuroscience, 2020, 40, 4761-4772.	3.6	21
44	Design for a Brain Revisited: The Neuromorphic Design and Functionality of the Interactive Space 'Ada'. Reviews in the Neurosciences, 2003, 14, 145-80.	2.9	19
45	Automatic detection of periods of slow wave sleep based on intracranial depth electrode recordings. Journal of Neuroscience Methods, 2017, 282, 1-8.	2.5	18
46	Electrocorticography During Deep Brain Stimulation Surgery: Safety Experience From 4 Centers Within the National Institute of Neurological Disorders and Stroke Research Opportunities in Human Consortium. Neurosurgery, 2021, 88, E420-E426.	1.1	18
47	Time course of target recognition in visual search. Frontiers in Human Neuroscience, 2010, 4, 31.	2.0	17
48	Predeliberation activity in prefrontal cortex and striatum and the prediction of subsequent value judgment. Frontiers in Neuroscience, 2013, 7, 225.	2.8	17
49	Surgical and Electrophysiological Techniques for Single-Neuron Recordings in Human Epilepsy Patients. Neuromethods, 2018, , 267-293.	0.3	17
50	Abstract goal representation in visual search by neurons in the human pre-supplementary motor area. Brain, 2019, 142, 3530-3549.	7.6	17
51	Competition Through Selective Inhibitory Synchrony. Neural Computation, 2012, 24, 2033-2052.	2.2	16
52	The hierarchical construction of value. Current Opinion in Behavioral Sciences, 2021, 41, 71-77.	3.9	15
53	Saccade-related neural communication in the human medial temporal lobe is modulated by the social relevance of stimuli. Science Advances, 2022, 8, eabl6037.	10.3	14
54	Computation in Dynamically Bounded Asymmetric Systems. PLoS Computational Biology, 2015, 11, e1004039.	3.2	13

#	Article	IF	CITATIONS
55	Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks. Neural Computation, 2018, 30, 1359-1393.	2.2	12
56	A NWB-based dataset and processing pipeline of human single-neuron activity during a declarative memory task. Scientific Data, 2020, 7, 78.	5.3	11
57	Properties and hemispheric differences of theta oscillations in the human hippocampus. Hippocampus, 2022, 32, 335-341.	1.9	6
58	Simultaneous Eye Tracking and Single-Neuron Recordings in Human Epilepsy Patients. Journal of Visualized Experiments, 2019, , .	0.3	5
59	Singleâ€neuron correlate of epilepsyâ€related cognitive deficits in visual recognition memory in right mesial temporal lobe. Epilepsia, 2021, 62, 2082-2093.	5.1	4
60	Single-Neuron Correlates of Awareness during Attentional Blinks. Trends in Cognitive Sciences, 2018, 22, 5-7.	7.8	3
61	Competition with and without priority control: linking rivalry to attention through winnerâ€ŧakeâ€all networks with memory. Annals of the New York Academy of Sciences, 2015, 1339, 138-153.	3.8	2
62	Subthalamic Nuclei Deep Brain Stimulation Improves Color Vision in Patients with Parkinson's Disease. Brain Stimulation, 2016, 9, 948-949.	1.6	2
63	Making Decisions Based on Autobiographical Memories. Neuron, 2015, 86, 350-352.	8.1	1
64	Decision Making: A Role for the Amygdala in Translating Goals into Choices. Current Biology, 2016, 26, R1177-R1179.	3.9	1
65	Insights on Vision Derived from Studying Human Single Neurons. Cognitive Science and Technology, 2017, , 25-39.	0.4	1
66	Metamemory: Rats know the strength of their memory. Current Biology, 2021, 31, R1432-R1434.	3.9	1
67	Group sparse coding with a collection of winner-take-all networks. BMC Neuroscience, 2012, 13, .	1.9	0
68	Neuroscience: Transforming Visual Percepts into Memories. Current Biology, 2014, 24, R125-R127.	3.9	0