Douglas W Tallamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6801367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do nonâ€native plants contribute to insect declines?. Ecological Entomology, 2021, 46, 729-742.	2.2	47
2	Are declines in insects and insectivorous birds related?. Condor, 2021, 123, .	1.6	35
3	Lepidoptera Host Records Accurately Predict Tree Use by Foraging Birds. Northeastern Naturalist, 2021, 28, .	0.3	4
4	Few keystone plant genera support the majority of Lepidoptera species. Nature Communications, 2020, 11, 5751.	12.8	38
5	Effects of parental diapause status and release time on field reproductive biology of the introduced egg parasitoid, Oobius agrili (Hymenoptera: Encyrtidae) in the Mid-Atlantic: Implications for biocontrol of the emerald ash borer (Coleoptera: Buprestidae). Biological Control, 2020, 149, 104342.	3.0	0
6	Sourcing native plants to support ecosystem function in different planting contexts. Restoration Ecology, 2019, 27, 470-476.	2.9	14
7	Canopy tree preference by insectivorous birds in shadeâ€coffee farms: Implications for migratory bird conservation. Biotropica, 2019, 51, 387-398.	1.6	18
8	Introduced plants reduce species interactions. Biological Invasions, 2019, 21, 983-992.	2.4	23
9	Predation of Dragonfly Nymphs by Passerines. Northeastern Naturalist, 2019, 26, .	0.3	1
10	Roadside habitat impacts insect traffic mortality. Journal of Insect Conservation, 2018, 22, 183-188.	1.4	36
11	Do Cultivars of Native Plants Support Insect Herbivores?. HortTechnology, 2018, 28, 596-606.	0.9	13
12	Nonnative plants reduce population growth of an insectivorous bird. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11549-11554.	7.1	102
13	Creating Living Landscapes: Why We Need to Increase Plant/Insect Linkages in Designed Landscapes. HortTechnology, 2017, 27, 446-452.	0.9	2
14	Native plants improve breeding and foraging habitat for an insectivorous bird. Biological Conservation, 2017, 213, 42-50.	4.1	98
15	Public preferences for ecosystem services on exurban landscapes: A case study from the Mid-Atlantic, USA. Heliyon, 2016, 2, e00127.	3.2	3
16	Reproductive and developmental biology of the emerald ash borer parasitoid Spathius galinae (Hymenoptera: Braconidae) as affected by temperature. Biological Control, 2016, 96, 1-7.	3.0	15
17	Maternal care in Gargaphia decoris (Heteroptera, Tingidae), with comments on this behavior within the genus and family. Revista Brasileira De Entomologia, 2015, 59, 104-106.	0.4	6
18	Not all nonâ€natives are equally unequal: reductions in herbivore βâ€diversity depend on phylogenetic similarity to native plant community. Ecology Letters, 2015, 18, 1087-1098.	6.4	32

#	Article	IF	CITATIONS
19	Mating Success, Longevity, and Fertility of Diabrotica virgifera virgifera LeConte (Chrysomelidae:) Tj ETQq1 1 0.78 2015, 6, 943-960.	34314 rgBT 2.2	7 /Overloc <mark>k</mark> 6
20	An Evaluation of Butterfly Gardens for Restoring Habitat for the Monarch Butterfly (Lepidoptera:) Tj ETQq0 0 0 rg	BT /Overloo 1.4	ck 10 Tf 50
21	Effect of Parasitoid: Host Ratio and Group Size on Fitness of Spathius galinae (Hymenoptera:) Tj ETQq1 1 0.7843	14 rgBT /O 1.8	verlock 10 T
22	Plant origin asymmetrically impacts feeding guilds and life stages driving community structure of herbivorous arthropods. Diversity and Distributions, 2013, 19, 1553-1565.	4.1	57
23	Arthropod Communities on Native and Nonnative Early Successional Plants. Environmental Entomology, 2013, 42, 851-859.	1.4	44
24	Can alien plants support generalist insect herbivores?. Biological Invasions, 2010, 12, 2285-2292.	2.4	77
25	Female spotted cucumber beetles use own cuticular hydrocarbon signature to choose immunocompatible mates. Animal Behaviour, 2010, 80, 9-12.	1.9	17
26	Nonâ€native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere, 2010, 1, 1-22.	2.2	109
27	Impact of Native Plants on Bird and Butterfly Biodiversity in Suburban Landscapes. Conservation Biology, 2009, 23, 219-224.	4.7	275
28	Ranking Lepidopteran Use of Native Versus Introduced Plants. Conservation Biology, 2009, 23, 941-947.	4.7	152
29	Effects of non-native plants on the native insect community of Delaware. Biological Invasions, 2008, 10, 1159-1169.	2.4	38
30	Molecular phylogeny of rootworms and related galerucine beetles (Coleoptera: Chrysomelidae). Zoologica Scripta, 2008, 37, 195-222.	1.7	28
31	Composition and Abundance of Ground-Dwelling Coleoptera in a Fragmented and Continuous Forest. Environmental Entomology, 2006, 35, 1550-1560.	1.4	13
32	Female Choice by Scent Recognition in the Spotted Cucumber Beetle Ethology, 2006, 112, 300-306.	1.1	5
33	A new record of amphisexual care in an insect with exclusive paternal care: Rhynocoris tristis (Heteroptera: Reduviidae). Journal of Ethology, 2006, 24, 305-307.	0.8	10
34	Composition and Abundance of Ground-Dwelling Coleoptera in a Fragmented and Continuous Forest. Environmental Entomology, 2006, 35, 1550-1560.	1.4	4
35	EGG DUMPING IN INSECTS. Annual Review of Entomology, 2005, 50, 347-370.	11.8	66
36	Do Alien Plants Reduce Insect Biomass?. Conservation Biology, 2004, 18, 1689-1692.	4.7	170

DOUGLAS W TALLAMY

#	Article	IF	CITATIONS
37	Maternal Care in Compseuta picta, an African Lace Bug (Heteroptera: Tingidae). Journal of Insect Behavior, 2004, 17, 247-249.	0.7	6
38	Revisiting Paternal Care in the Assassin Bug, Atopozelus pallens (Heteroptera: Reduviidae). Journal of Insect Behavior, 2004, 17, 431-436.	0.7	17
39	Convergent evolution of cucurbitacin feeding in spatially isolated rootworm taxa (Coleoptera:) Tj ETQq1 1 0.784	314 rgBT / 2.7	Oyerlock 10
40	Copulatory courtship signals male genetic quality in cucumber beetles. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 77-82.	2.6	63
41	Effects of age, sex, and dietary history on response to cucurbitacin in Acalymma vittatum. Entomologia Experimentalis Et Applicata, 2002, 104, 69-78.	1.4	20
42	Title is missing!. Journal of Insect Behavior, 2002, 15, 467-475.	0.7	14
43	Title is missing!. Journal of Insect Behavior, 2002, 15, 495-511.	0.7	7
44	Effects of age, sex, and dietary history on response to cucurbitacin in Acalymma vittatum. , 2002, , 69-78.		0
45	EVOLUTION OFEXCLUSIVEPATERNALCARE INARTHROPODS. Annual Review of Entomology, 2001, 46, 139-165.	11.8	125
46	Fate of Male-derived Cucurbitacins in Spotted Cucumber Beetle Females. Journal of Chemical Ecology, 2000, 26, 413-427.	1.8	38
47	Courtship role reversal and deceptive signals in the long-tailed dance fly, Rhamphomyia longicauda. Animal Behaviour, 2000, 59, 411-421.	1.9	115
48	Sexual selection and the evolution of exclusive paternal care in arthropods. Animal Behaviour, 2000, 60, 559-567.	1.9	118
49	Child Care among the Insects. Scientific American, 1999, 280, 72-77.	1.0	31
50	Semelparity and the evolution of maternal care in insects. Animal Behaviour, 1999, 57, 727-730.	1.9	89
51	Title is missing!. Journal of Chemical Ecology, 1999, 25, 2285-2304.	1.8	113
52	Cucurbitacins: A Role in Cucumber Beetle Steroid Nutrition?. Journal of Chemical Ecology, 1999, 25, 2373-2383.	1.8	9
53	An Alternate Route to Insect Pharmacophagy: The Loose Receptor Hypothesis. Journal of Chemical Ecology, 1999, 25, 1987-1997.	1.8	20
54	Chemical mediation of egg dumping in the lace bugGargaphia solaniHeidemann (Heteroptera: Tingidae). Animal Behaviour, 1998, 56, 1491-1495.	1.9	14

DOUGLAS W TALLAMY

#	Article	IF	CITATIONS
55	Production of cucurbitacins by cucurbit cell cultures. Plant Science, 1998, 131, 209-218.	3.6	5
56	Sequestered Cucurbitacins and Pathogenicity of Metarhizium anisopliae (Moniliales: Moniliaceae) on Spotted Cucumber Beetle Eggs and Larvae (Coleoptera: Chrysomelidae). Environmental Entomology, 1998, 27, 366-372.	1.4	62
57	Cucurbitacins as Feeding and Oviposition Deterrents to Insects. Environmental Entomology, 1997, 26, 678-683.	1.4	95
58	Intra- and Interspecific Genetic Variation in the Gustatory Perception of Cucurbitacins by Diabroticite Rootworms (Coleoptera: Chrysomelidae). Environmental Entomology, 1997, 26, 1364-1372.	1.4	18
59	Long- and Short-Term Effect of Cucurbitacin Consumption on Acalymma vittatum (Coleoptera:) Tj ETQq1 1 0.784	4314 rgBT 1.4	/Qyerlock 10
60	Bioluminescence in firefly larvae: A test of the aposematic display hypothesis (Coleoptera: Lampyridae). Journal of Insect Behavior, 1997, 10, 365-370.	0.7	57
61	Carbon Isotopic Signatures of Elytra Reflect Larval Diet in Luperine Rootworms (Coleoptera:) Tj ETQq1 1 0.78431	.4 <u>rg</u> BT /O	verlock 10 Tf
62	A new cucurbitacin profile forCucurbita andreana: A candidate for cucurbitacin tissue culture. Journal of Chemical Ecology, 1993, 19, 1135-1141.	1.8	9
63	The effect of relatedness on Gargaphia egg dumping behaviour. Animal Behaviour, 1993, 45, 1239-1241.	1.9	9
64	Effects of Age, Reproductive Activity, Sex, and Prior Exposure on Sensitivity to Cucurbitacins in Southern Corn Rootworm (Coleoptera: Chrysomelidae). Environmental Entomology, 1993, 22, 925-932.	1.4	29
65	Effect of predators and host phenology on the maternal and reproductive behaviors ofGargaphia lace bugs (Hemiptera: Tingidae). Journal of Insect Behavior, 1992, 5, 177-192.	0.7	12
66	Affinity of Spotted Cucumber Beetle (Coleoptera: Chrysomelidae) Larvae to Cucurbitacins. Environmental Entomology, 1991, 20, 1173-1175.	1.4	38
67	Costs and benefits of the egg-dumping alternative in Gargaphia lace bugs (Hemiptera: Tingidae). Animal Behaviour, 1990, 39, 352-359.	1.9	51
68	Variation and Function of Cucurbitacins in Cucurbita: An Examination of Current Hypotheses. American Naturalist, 1989, 133, 766-786.	2.1	70
69	Age specificity of â€~egg dumping' in Gargaphia solani (Hemiptera: Tingidae). Animal Behaviour, 1986, 34, 599-603.	1.9	18
70	Behavioral Adaptations in Insects to Plant Allelochemicals. , 1986, , 273-300.		19
71	Genetic Variation in the Maternal Defensive Behavior of the Lace Bug Gargaphia solani. , 1986, , 135-143.		3
72	?Egg dumping? in lace bugs (Gargaphia solani, Hemiptera: Tingidae). Behavioral Ecology and Sociobiology, 1985, 17, 357-362.	1.4	53

DOUGLAS W TALLAMY

#	Article	IF	CITATIONS
73	Squash Beetle Feeding Behavior: An Adaptation against Induced Cucurbit Defenses. Ecology, 1985, 66, 1574-1579.	3.2	102
74	Insect Parental Care. BioScience, 1984, 34, 20-24.	4.9	130
75	Equilibrium Biogeography and Its Application to Insect Host-Parasite Systems. American Naturalist, 1983, 121, 244-254.	2.1	16
76	Life History Trade-Offs in Gargaphia Solani (Hemiptera: Tingidae): The Cost of Reproduction. Ecology, 1982, 63, 616-620.	3.2	104
77	Age specific maternal defense in Gargaphia solani (Hemiptera: Tingidae). Behavioral Ecology and Sociobiology, 1982, 11, 7-11.	1.4	46
78	Maternal care in Gargaphia solani (Hemiptera: Tingidae). Animal Behaviour, 1981, 29, 771-778.	1.9	109
79	Organization of a Guild of Sap-feeding Insects: Equilibrium vs. Nonequilibrium Coexistence. Proceedings in Life Sciences, 1981, , 151-181.	0.5	22
80	Alternative Life History Patterns in Risky Environments: An Example from Lacebugs. Proceedings in Life Sciences, 1981, , 129-147.	0.5	31
81	Migration in Heterogeneous Environments: Differences in Habitat Selection Between the Wing Forms of the Dimorphic Planthopper, Prokelisia Marginata (Homoptera: Delphacidae). Ecology, 1980, 61, 859-867.	3.2	75
82	Responses of Sap-feeding Insects (Homoptera - Hemiptera) to Simplification of Host Plant Structure 1. Environmental Entomology, 1979, 8, 1021-1028.	1.4	27
83	A Comparison of Malaise Trapping and Aerial Netting for Sampling a Horsefly and Deerfly Community 1 , 2. Environmental Entomology, 1976, 5, 788-792.	1.4	14
84	Maternal care in the Hemiptera: ancestry, alternatives, and current adaptive value. , 0, , 94-115.		70