Chanyeop Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6798323/publications.pdf

Version: 2024-02-01

933447 996975 48 354 10 15 citations g-index h-index papers 49 49 49 136 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of Fabrication Conditions on the Partial Discharge Mitigation Performance of Electrets for Power Electronic Driven Systems. IEEE Transactions on Industrial Electronics, 2023, 70, 5203-5213.	7.9	6
2	Effects of filler composition, loading, and geometry on the dielectric loss, partial discharge, and dielectric strength of liquid metal polymer composites. Composites Part B: Engineering, 2022, 234, 109686.	12.0	15
3	Evaluating the Lightning Strike Damage Tolerance for CFRP Composite Laminates Containing Conductive Nanofillers. Applied Composite Materials, 2022, 29, 1537-1554.	2.5	12
4	Epoxy Electret: A Remedy for Partial Discharge at Cryogenic Temperature. IOP Conference Series: Materials Science and Engineering, 2022, 1241, 012005.	0.6	0
5	Electret Based Mitigation of Partial Discharge in PWM Inverter Driven System., 2022,,.		3
6	Confidence-Level-Based Semi-Supervised Machine Learning Approach for Partial Discharge Signal Classification., 2022,,.		1
7	Classification and comparison of AC and DC partial discharges by pulse waveform analysis. International Journal of Electrical Power and Energy Systems, 2021, 125, 106518.	5.5	19
8	Polyaniline doped graphene thin film to enhance the electrical conductivity in carbon fiber-reinforced composites for lightning strike mitigation. Journal of Composite Materials, 2021, 55, 4445-4455.	2.4	3
9	MXene Reinforced Thermosetting Composite for Lightning Strike Protection of Carbon Fiber Reinforced Polymer. Advanced Materials Interfaces, 2021, 8, 2100803.	3.7	7
10	Detection of Series Faults in High-Temperature Superconducting DC Power Cables Using Machine Learning. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-9.	1.7	6
11	Electret: A Remedy for Partial Discharge and Surface Flashover in Shipboard Power Applications. , 2021, , .		6
12	Electrets: A Remedy for Partial Discharge Caused by Power Electronics Switching. IEEE Transactions on Industrial Electronics, 2021, 68, 12947-12952.	7.9	14
13	Electret Fabrication Under Various Discharge Conditions of Triode Corona Charging and the Partial Discharge Mitigation Performance., 2021,,.		8
14	Application of D-dot Sensor for Partial Discharge Waveform Measurement. , 2021, , .		2
15	Characterization of a Superconducting Gas Insulated Cable Under AC and DC Voltages. , 2021, , .		O
16	Validating Discharge and Ground Electrode Effect on the Lightning Strike Damage of Materials and its Implication to Composite Structures by Modeling Lightning Discharge., 2021,,.		0
17	Electret: A Solution to Partial Discharge in Power Electronics Applications. , 2021, , .		6
18	Electret Fabrication Under Various Temperatures and Partial Discharge Mitigation Performance. , 2021, , .		6

#	Article	IF	CITATIONS
19	Viscosity Measurement of Gaseous and Supercritical Fluids as a Dielectric Medium. , 2021, , .		1
20	Theoretical Modeling and Experimental Testing on the Electrical Breakdown in Supercritical Fluids. , 2021, , .		1
21	Electret: A Method to Increase Critical Flashover Voltage in Power Dense Applications. , 2021, , .		3
22	Testbed to Study the Surface Charge Distribution along DC Standoff Insulators for All-Electric Ships. , 2020, , .		4
23	Modeling the dielectric strength variation of supercritical fluids driven by cluster formation near critical point. Physics of Fluids, 2020, 32, .	4.0	7
24	Investigation of the dielectric strength of supercritical carbon dioxide–trifluoroiodomethane fluid mixtures. Physics of Fluids, 2020, 32, .	4.0	10
25	A Review on Dielectric Properties of Supercritical Fluids. , 2020, , .		10
26	Electron Scattering Cross Section Data of Supercritical CO ₂ Clusters., 2020,,.		2
27	Electret: An Entirely New Approach of Solving Partial Discharge Caused by Triple Points, Sharp Edges, Bubbles, and Airgaps. IEEE Access, 2020, 8, 78354-78366.	4.2	21
28	Breakdown characteristics of carbon dioxide–ethane azeotropic mixtures near the critical point. Physics of Fluids, 2020, 32, .	4.0	13
29	Discharge and ground electrode design considerations for the lightning strike damage tolerance assessment of CFRP matrix composite laminates. Composites Part B: Engineering, 2020, 198, 108226.	12.0	18
30	Modeling cluster formation driven variations in critical electric field of He and Xe near critical point based on electron scattering cross sections. Physics of Fluids, 2020, 32, 127106.	4.0	1
31	Design of Transmission Line and Electromagnetic Field Sensors for DC Partial Discharge Analysis. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 2138-2146.	2.9	9
32	Electrical Breakdown Characteristics of Supercritical Trifluoroiodomethane-Carbon Dioxide (CF3I-CO2) Mixtures., 2020,,.		3
33	High Temperature Superconducting Power Cables for MVDC Power Systems of Navy Ships., 2019,,.		13
34	Versatile Paschen's model for the dielectric strength estimation of binary and ternary gas mixtures. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 1569-1576.	2.9	4
35	Understanding Surface Flashover Strength in Cryogenic Helium Gas for Superconducting Devices. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	7
36	A New Representation of Paschen's Law Suitable for Variable Temperature Power Applications. , 2019, , .		2

#	Article	IF	CITATIONS
37	Gas-Insulated High Temperature Superconducting Coaxial Dipole for MVDC Power Systems. , 2019, , .		2
38	The dielectric strength of dissociated cryogenic gas media. Journal of Applied Physics, 2018, 124, .	2.5	7
39	The influence of temperature on the dielectric strength of gaseous cryogens. , 2018, , .		8
40	Evaluating the dielectric strength of helium-nitrogen gas mixtures by plasma parameter measurements. Physics of Plasmas, 2018, 25, .	1.9	5
41	Effect of magnetic field on the dielectric strength of gaseous cooling media for superconducting applications. , 2018, , .		3
42	Modelling of electrical breakdown in supercritical CO2 with molecular clusters formation. , 2018, , .		7
43	Boltzmann Analysis of Cryogenic \$ext{He}\$ –\$ext{H}_{ext{2}}\$ Gas Mixtures as Dielectric Media for High-Temperature Superconducting Power Devices. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-6.	1.7	9
44	The dielectric properties of gaseous cryogen mixtures of He, H2, Ne, and N2 in a temperature range of 50–80 K at pressures up to 2.0 MPa. Journal of Applied Physics, 2017, 121, .	2.5	31
45	The critical electric field of gas mixtures over the extended range of cryogenic operating conditions. Journal of Applied Physics, 2017, 122, .	2.5	17
46	A versatile modeling technique for predicting dielectric strength improvements in gas mixtures for superconducting applications. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 2755-2764.	2.9	16
47	Langmuir probe plasma diagnostics to investigate the dielectric properties of cryogenic gas mixtures. IOP Conference Series: Materials Science and Engineering, 2017, 278, 012039.	0.6	1
48	A versatile model for estimating breakdown voltage and its application for cryogenic gas mixtures. , 2016, , .		4