Jochen Linke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6795620/publications.pdf

Version: 2024-02-01

		279798	434195
31	1,729 citations	23	31
papers	citations	h-index	g-index
31	31	31	1264
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Use of tungsten material for the ITER divertor. Nuclear Materials and Energy, 2016, 9, 616-622.	1.3	216
2	Performance of different tungsten grades under transient thermal loads. Nuclear Fusion, 2011, 51, 073017.	3.5	153
3	Effects of ELMs on ITER divertor armour materials. Journal of Nuclear Materials, 2007, 363-365, 301-307.	2.7	138
4	Challenges for plasma-facing components in nuclear fusion. Matter and Radiation at Extremes, 2019, 4, \cdot	3.9	137
5	Tungsten and CFC degradation under combined high cycle transient and steady state heat loads. Fusion Engineering and Design, 2012, 87, 1201-1205.	1.9	85
6	Materials for DEMO and reactor applicationsâ€"boundary conditions and new concepts. Physica Scripta, 2016, T167, 014002.	2.5	85
7	The new electron beam test facility JUDITH II for high heat flux experiments on plasma facing components. Fusion Engineering and Design, 2005, 75-79, 365-369.	1.9	69
8	Material testing facilities and programs for plasma-facing component testing. Nuclear Fusion, 2017, 57, 092012.	3.5	68
9	Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten. Physica Scripta, 2014, T159, 014005.	2.5	65
10	Evolution of tungsten degradation under combined high cycle edge-localized mode and steady-state heat loads. Physica Scripta, 2011, T145, 014057.	2.5	61
11	Thermal shock tests to qualify different tungsten grades as plasma facing material. Physica Scripta, 2016, T167, 014015.	2.5	61
12	Investigation of tungsten and beryllium behaviour under short transient events. Fusion Engineering and Design, 2007, 82, 1720-1729.	1.9	60
13	Plasma facing materials and components for future fusion devices—development, characterization and performance under fusion specific loading conditions. Physica Scripta, 2006, T123, 45-53.	2.5	57
14	Material properties and their influence on the behaviour of tungsten as plasma facing material. Nuclear Fusion, 2017, 57, 066018.	3.5	57
15	Fabrication and characterization of ultra-fine grained tungsten by resistance sintering under ultra-high pressure. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2009, 505, 131-135.	5.6	51
16	High Heat Flux Performance of Plasma Facing Materials and Components under Service Conditions in Future Fusion Reactors. Fusion Science and Technology, 2006, 49, 455-464.	1.1	50
17	Transient heat load challenges for plasma-facing materials during long-term operation. Nuclear Materials and Energy, 2017, 12, 148-155.	1.3	49
18	Damage structure in divertor armor materials exposed to multiple ITER relevant ELM loads. Fusion Engineering and Design, 2009, 84, 1982-1986.	1.9	48

#	Article	IF	CITATIONS
19	Impact of combined transient plasma/heat loads on tungsten performance below and above recrystallization temperature. Nuclear Fusion, 2015, 55, 123004.	3.5	45
20	Influence of helium induced nanostructures on the thermal shock performance of tungsten. Nuclear Materials and Energy, 2016, 9, 177-180.	1.3	27
21	Plasma Facing Materials for the JET ITER-Like Wall. Fusion Science and Technology, 2012, 62, 1-8.	1.1	26
22	Simulation of transient heat loads on high heat flux materials and components. Journal of Nuclear Materials, 2011, 417, 761-764.	2.7	24
23	EU Development of High Heat Flux Components. Fusion Science and Technology, 2005, 47, 678-685.	1.1	23
24	Reduction of preferential erosion of carbon fibre composites under intense transient heat pulses. Physica Scripta, 2007, T128, 246-249.	2.5	18
25	High heat flux performance of W-Eurofer brazed joints. Journal of Nuclear Materials, 2018, 499, 225-232.	2.7	13
26	Experimental study of ELM-like heat loading on beryllium under ITER operational conditions. Physica Scripta, 2016, T167, 014024.	2.5	9
27	High heat flux testing of first wall mock-ups with and without neutron irradiation. Nuclear Materials and Energy, 2016, 9, 41-45.	1.3	8
28	Investigation of damages induced by ITER-relevant heat loads during massive gas injections on Beryllium. Nuclear Materials and Energy, 2016, 9, 145-152.	1.3	8
29	Performance estimation of beryllium under ITER relevant transient thermal loads. Nuclear Materials and Energy, 2019, 18, 291-296.	1.3	7
30	High pulse number transient heat loads on beryllium. Nuclear Materials and Energy, 2017, 12, 1184-1188.	1.3	6
31	A tritium diagnostic and trap for JUDITHâ€"First results in disruption simulation experiments with neutron irradiated beryllium during cyclic electron beam testing. Fusion Engineering and Design, 2008, 83, 1108-1113.	1.9	5