John S Blanchard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6795583/publications.pdf Version: 2024-02-01

IOHN S RIANCHARD

#	Article	IF	CITATIONS
1	Bacterial GCN5-Related <i>N</i> -Acetyltransferases: From Resistance to Regulation. Biochemistry, 2016, 55, 989-1002.	2.5	154
2	Bacterial Branched-Chain Amino Acid Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry, 2017, 56, 5849-5865.	2.5	119
3	Rhodococcusl-Phenylalanine Dehydrogenase:Â Kinetics, Mechanism, and Structural Basis for Catalytic Specifityâ€,‡. Biochemistry, 2000, 39, 9174-9187.	2.5	108
4	Reversible Acetylation and Inactivation of <i>Mycobacterium tuberculosis</i> Acetyl-CoA Synthetase Is Dependent on cAMP. Biochemistry, 2011, 50, 5883-5892.	2.5	98
5	Expression, Purification, and Characterization of Mycobacterium tuberculosis Mycothione Reductase. Biochemistry, 1999, 38, 11827-11833.	2.5	94
6	Steady-State and Pre-Steady-State Kinetic Analysis ofMycobacterium tuberculosisPantothenate Synthetaseâ€. Biochemistry, 2001, 40, 12904-12912.	2.5	93
7	The Biochemistry and Enzymology of Amino Acid Dehydrogenases. Critical Reviews in Biochemistry and Molecular Biology, 1994, 29, 415-467.	5.2	92
8	Use of isotope effects to deduce the chemical mechanism of fumarase. Biochemistry, 1980, 19, 4506-4513.	2.5	89
9	Structural Symmetry:  The Three-Dimensional Structure of Haemophilus Influenzae Diaminopimelate Epimerase,. Biochemistry, 1998, 37, 16452-16458.	2.5	75
10	The Dual Biosynthetic Capability of N-Acetylornithine Aminotransferase in Arginine and Lysine Biosynthesis. Biochemistry, 1999, 38, 3019-3024.	2.5	73
11	Three-Dimensional Structure of Tetrahydrodipicolinate N-Succinyltransferase,. Biochemistry, 1997, 36, 489-494.	2.5	71
12	Chemical Mechanism ofHaemophilus influenzaeDiaminopimelate Epimeraseâ€. Biochemistry, 1999, 38, 4416-4422.	2.5	64
13	Enzymology of Bacterial Lysine Biosynthesis. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 72, 279-324.	1.3	62
14	Mycobacterium tuberculosisMycothione Reductase:Â pH Dependence of the Kinetic Parameters and Kinetic Isotope Effectsâ€. Biochemistry, 2001, 40, 5119-5126.	2.5	61
15	The Requirement for Manganese and Oxygen in the Isoniazid-Dependent Inactivation ofMycobacteriumtuberculosisEnoyl Reductase. Journal of the American Chemical Society, 1997, 119, 2331-2332.	13.7	60
16	Hydrolysis of N-Succinyl-I,I-diaminopimelic Acid by the Haemophilus influenzae dapE-Encoded Desuccinylase:  Metal Activation, Solvent Isotope Effects, and Kinetic Mechanism. Biochemistry, 1998, 37, 10478-10487.	2.5	56
17	Mechanistic Analysis of theargE-EncodedN-Acetylornithine Deacetylaseâ€. Biochemistry, 2000, 39, 1285-1293.	2.5	55
18	Enzyme-Catalyzed Acylation of Homoserine: Mechanistic Characterization of theEscherichia colimetA-Encoded Homoserine Transsuccinylaseâ€. Biochemistry, 1999, 38, 14416-14423.	2.5	54

JOHN S BLANCHARD

#	Article	IF	CITATIONS
19	Kinetic and Chemical Mechanism of α-Isopropylmalate Synthase from Mycobacterium tuberculosis. Biochemistry, 2006, 45, 8988-8999.	2.5	50
20	Mycobacterium tuberculosisLipoamide Dehydrogenase Is Encoded by Rv0462 and Not by thelpdAorlpdBGenesâ€. Biochemistry, 2001, 40, 11353-11363.	2.5	44
21	Interaction of Pyridine Nucleotide Substrates withEscherichia coliDihydrodipicolinate Reductase:Â Thermodynamic and Structural Analysis of Binary Complexesâ€,‡. Biochemistry, 1996, 35, 13294-13302.	2.5	42
22	Slow-onset Feedback Inhibition: Inhibition ofMycobacteriumtuberculosisα-Isopropylmalate Synthase byl-Leucine. Journal of the American Chemical Society, 2005, 127, 10004-10005.	13.7	39
23	Enzyme-Catalyzed Acylation of Homoserine:Â Mechanistic Characterization of theHaemophilus influenzaemet2-Encoded Homoserine Transacetylaseâ€. Biochemistry, 2000, 39, 8556-8564.	2.5	38
24	Kinetic and Mechanistic Characterization of Recombinant Lactobacillus viridescens FemX (UDP-N-acetylmuramoyl Pentapeptide-lysine N6-Alanyltransferase). Journal of Biological Chemistry, 2003, 278, 22861-22867.	3.4	36
25	Mechanism and Regulation of Mycobactin Fatty Acyl-AMP Ligase FadD33. Journal of Biological Chemistry, 2013, 288, 28116-28125.	3.4	35
26	Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2016, 291, 7060-7069.	3.4	35
27	Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis. Journal of Biological Chemistry, 2016, 291, 22315-22326.	3.4	34
28	Mechanism-Based Inhibition of the <i>Mycobacterium tuberculosis</i> Branched-Chain Aminotransferase by <scp>d</scp> - and <scp>l</scp> -Cycloserine. ACS Chemical Biology, 2017, 12, 1235-1244.	3.4	33
29	Inhibiting the β-Lactamase of Mycobacterium tuberculosis (Mtb) with Novel Boronic Acid Transition-State Inhibitors (BATSIs). ACS Infectious Diseases, 2015, 1, 234-242.	3.8	30
30	For the record: The threeâ€dimensional structure of the ternary complex of <i>Corynebacterium glutamicum</i> diaminopimelate dehydrogenaseâ€NADPHâ€Lâ€2â€aminoâ€6â€methyleneâ€pimelate. Protein S 2000, 9, 2034-2037.	Sci en ce,	29
31	Steady-State and Pre-steady-State Kinetic Analysis of <i>Mycobacterium smegmatis</i> Cysteine Ligase (MshC). Biochemistry, 2007, 46, 11421-11429.	2.5	28
32	The ying and yang of rifampicin. Nature Medicine, 1998, 4, 14-15.	30.7	24
33	Substrate binding and conformational changes of <i>Clostridium glutamicum</i> diaminopimelate dehydrogenase revealed by hydrogen/deuterium exchange and electrospray mass spectrometry. Protein Science, 1998, 7, 293-299.	7.6	24
34	Kinetic analysis of the effects of monovalent cations and divalent metals on the activity of Mycobacterium tuberculosis α-isopropylmalate synthase. Archives of Biochemistry and Biophysics, 2006, 451, 141-148.	3.0	23
35	Chemical Mechanism of the Branched-Chain Aminotransferase IlvE from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2016, 55, 6295-6303.	2.5	23
36	Kinetic Evidence for Interdomain Communication in the Allosteric Regulation of α-Isopropylmalate Synthase from Mycobacterium tuberculosis. Biochemistry, 2009, 48, 1996-2004.	2.5	22

3

JOHN S BLANCHARD

#	Article	IF	CITATIONS
37	Kinetic and Structural Characterization of the Interaction of 6-Methylidene Penem 2 with the β-Lactamase from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2015, 54, 5657-5664.	2.5	20
38	Vinylogous Amide Analogues of Diaminopimelic Acid (DAP) as Inhibitors of Enzymes Involved in Bacterial Lysine Biosynthesis. Organic Letters, 2000, 2, 3857-3860.	4.6	19
39	Acetylation of acetyl-CoA synthetase from Mycobacterium tuberculosis leads to specific inactivation of the adenylation reaction. Archives of Biochemistry and Biophysics, 2014, 550-551, 42-49.	3.0	19
40	Identification of Mycobacterial RplJ/L10 and RpsA/S1 Proteins as Novel Targets for CD4 ⁺ T Cells. Infection and Immunity, 2017, 85, .	2.2	13
41	Production of trimethylamine from structurally related trimethylammonium compounds by resting cell suspensions of ?-butyrobetaine- and D,l-carnitine-grown Acinetobacter calcoaceticus and Pseudomonas putida. Archives of Microbiology, 1983, 135, 305-310.	2.2	12
42	The active site of the Mycobacterium tuberculosis branched-chain amino acid biosynthesis enzyme dihydroxyacid dehydratase contains a 2Fe–2S cluster. Journal of Biological Chemistry, 2019, 294, 13158-13170.	3.4	12
43	The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit. Viruses, 2020, 12, 976.	3.3	11
44	Mechanistic Characterization of <i>Escherichia coli</i> <scp>l</scp> -Aspartate Oxidase from Kinetic Isotope Effects. Biochemistry, 2017, 56, 4044-4052.	2.5	5
45	Biochemical Characterization of the <i>Mycobacterium smegmatis</i> Threonine Deaminase. Biochemistry, 2018, 57, 6003-6012.	2.5	5
46	Expression, purification, and crystallization ofmeso-diaminopimelate dehydrogenase fromCorynebacterium glutamicum. Proteins: Structure, Function and Bioinformatics, 1996, 25, 514-516.	2.6	2
47	A reversible acetylation system in mycobacteria. FASEB Journal, 2012, 26, 803.1.	0.5	0