Fabrizio Mammano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6794800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	T cell apoptosis characterizes severe Covid-19 disease. Cell Death and Differentiation, 2022, 29, 1486-1499.	11.2	90
2	Genotypic and Phenotypic Diversity of the Replication-Competent HIV Reservoir in Treated Patients. Microbiology Spectrum, 2022, 10, .	3.0	6
3	Anti-HIV-1 Activity of pepRF1, a Proteolysis-Resistant CXCR4 Antagonist Derived from Dengue Virus Capsid Protein. ACS Infectious Diseases, 2021, 7, 6-22.	3.8	3
4	Differential Inhibition of HIV Replication by the 12 Interferon Alpha Subtypes. Journal of Virology, 2021, 95, e0231120.	3.4	4
5	Early Antiretroviral Therapy Prevents Viral Infection of Monocytes and Inflammation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. Journal of Virology, 2020, 94, .	3.4	7
6	Differential utilization of CD4+ by transmitted/founder and chronic envelope glycoproteins in a MSM HIV-1 subtype B transmission cluster. Aids, 2020, 34, 2187-2200.	2.2	1
7	Detection of pretreatment minority HIV-1 reverse transcriptase inhibitor-resistant variants by ultra-deep sequencing has a limited impact on virological outcomes. Journal of Antimicrobial Chemotherapy, 2019, 74, 1408-1416.	3.0	15
8	Genetically Intact but Functionally Impaired HIV-1 Env Glycoproteins in the T-Cell Reservoir. Journal of Virology, 2018, 92, .	3.4	10
9	Dynamics of HIV-1 coinfection in different susceptible target cell populations during cell-free infection. Journal of Theoretical Biology, 2018, 455, 39-46.	1.7	5
10	Number of infection events per cell during HIV-1 cell-free infection. Scientific Reports, 2017, 7, 6559.	3.3	13
11	Genetic and phenotypic analyses of sequential vpu alleles from HIV-infected IFN-treated patients. Virology, 2017, 500, 247-258.	2.4	2
12	Single-dose pharmacokinetics and pharmacodynamics of oral tenofovir and emtricitabine in blood, saliva and rectal tissue: a sub-study of the ANRS IPERGAY trial. Journal of Antimicrobial Chemotherapy, 2017, 72, 478-485.	3.0	37
13	CIB1 and CIB2 are HIV-1 helper factors involved in viral entry. Scientific Reports, 2016, 6, 30927.	3.3	11
14	Kinetics of the establishment of HIV-1 viral interference and comprehensive analysis of the contribution of viral genes. Virology, 2016, 487, 59-67.	2.4	6
15	Quantifying the Antiviral Effect of IFN on HIV-1 Replication in Cell Culture. Scientific Reports, 2015, 5, 11761.	3.3	10
16	Impact of the HIV integrase genetic context on the phenotypic expression and in vivo emergence of raltegravir resistance mutations. Journal of Antimicrobial Chemotherapy, 2015, 70, 731-738.	3.0	12
17	Cell-to-cell infection by HIV contributes over half of virus infection. ELife, 2015, 4, .	6.0	137
18	Co-infection, super-infection and viral interference in HIV. Retrovirology, 2013, 10, .	2.0	4

Fabrizio Mammano

#	Article	IF	CITATIONS
19	Env mutations conferring improved entry efficiency allow HIV to replicate in the presence of IFN. Retrovirology, 2013, 10, .	2.0	0
20	Host cell factors in HIV replication: partners and opponents. Virologie, 2013, 17, 145-156.	0.1	0
21	Hyperthermia Stimulates HIV-1 Replication. PLoS Pathogens, 2012, 8, e1002792.	4.7	55
22	HIV Cell-to-Cell Transmission Requires the Production of Infectious Virus Particles and Does Not Proceed through Env-Mediated Fusion Pores. Journal of Virology, 2012, 86, 3924-3933.	3.4	51
23	Counteraction of Tetherin Antiviral Activity by Two Closely Related SIVs Differing by the Presence of a Vpu Gene. PLoS ONE, 2012, 7, e35411.	2.5	6
24	Automated Genome-Wide Visual Profiling of Cellular Proteins Involved in HIV Infection. Journal of Biomolecular Screening, 2011, 16, 945-958.	2.6	49
25	Innate Sensing of HIV-Infected Cells. PLoS Pathogens, 2011, 7, e1001284.	4.7	171
26	TIP47 is Required for the Production of Infectious HIV-1 Particles from Primary Macrophages. Traffic, 2010, 11, 455-467.	2.7	32
27	Role of Gag in HIV Resistance to Protease Inhibitors. Viruses, 2010, 2, 1411-1426.	3.3	46
28	Matrix and Envelope Coevolution Revealed in a Patient Monitored since Primary Infection with Human Immunodeficiency Virus Type 1. Journal of Virology, 2009, 83, 9875-9889.	3.4	11
29	Partial Inhibition of Human Immunodeficiency Virus Replication by Type I Interferons: Impact of Cell-to-Cell Viral Transfer. Journal of Virology, 2009, 83, 10527-10537.	3.4	58
30	<i>In vivo</i> selection by enfuvirtide of HIV type-1 <i>env</i> quasispecies with optimal potential for phenotypic expression of HR1 mutations. Antiviral Therapy, 2009, 14, 597-602.	1.0	4
31	Functional diversity of HIV-1 envelope proteins expressed by contemporaneous plasma viruses. Retrovirology, 2008, 5, 23.	2.0	9
32	Functional Central Polypurine Tract Provides Downstream Protection of the Human Immunodeficiency Virus Type 1 Genome from Editing by APOBEC3G and APOBEC3B. Journal of Virology, 2008, 82, 5116-5116.	3.4	0
33	Determining Human Immunodeficiency Virus Coreceptor Use in a Clinical Setting: Degree of Correlation between Two Phenotypic Assays and a Bioinformatic Model. Journal of Clinical Microbiology, 2007, 45, 279-284.	3.9	90
34	Impact of Natural Polymorphism within the gp41 Cytoplasmic Tail of Human Immunodeficiency Virus Type 1 on the Intracellular Distribution of Envelope Glycoproteins and Viral Assembly. Journal of Virology, 2007, 81, 125-140.	3.4	30
35	Genetic and Phenotypic Features of Blood and Genital Viral Populations of Clinically Asymptomatic and Antiretroviral-Treatment-Naive Clade A Human Immunodeficiency Virus Type 1-Infected Women. Journal of Clinical Microbiology, 2007, 45, 1838-1842.	3.9	23
36	Molecular Analysis of the HIV-1 Resistance Development: Enzymatic Activities, Crystal Structures, and Thermodynamics of Nelfinavir-resistant HIV Protease Mutants. Journal of Molecular Biology, 2007, 374, 1005-1016.	4.2	74

#	Article	IF	CITATIONS
37	Functional Central Polypurine Tract Provides Downstream Protection of the Human Immunodeficiency Virus Type 1 Genome from Editing by APOBEC3G and APOBEC3B. Journal of Virology, 2006, 80, 3679-3683.	3.4	28
38	Role of the Envelope Genetic Context in the Development of Enfuvirtide Resistance in Human Immunodeficiency Virus Type 1-Infected Patients. Journal of Virology, 2006, 80, 8807-8819.	3.4	59
39	Covert Human Immunodeficiency Virus Replication in Dendritic Cells and in DC-SIGN-Expressing Cells Promotes Long-Term Transmission to Lymphocytes. Journal of Virology, 2005, 79, 5386-5399.	3.4	130
40	Quantification of the Effects on Viral DNA Synthesis of Reverse Transcriptase Mutations Conferring Human Immunodeficiency Virus Type 1 Resistance to Nucleoside Analogues. Journal of Virology, 2005, 79, 812-822.	3.4	12
41	Human Immunodeficiency Virus Type 1 Variants Isolated from Single Plasma Samples Display a Wide Spectrum of Neutralization Sensitivity. Journal of Virology, 2005, 79, 11848-11857.	3.4	14
42	Polymorphism of the Human Immunodeficiency Virus Type 2 (HIV-2) Protease Gene and Selection of Drug Resistance Mutations in HIV-2-Infected Patients Treated with Protease Inhibitors. Journal of Clinical Microbiology, 2005, 43, 484-487.	3.9	64
43	Role of Minority Populations of Human Immunodeficiency Virus Type 1 in the Evolution of Viral Resistance to Protease Inhibitors. Journal of Virology, 2004, 78, 4234-4247.	3.4	76
44	A novel mechanism for HIV1-mediated bystander CD4+ T-cell death: neighboring dying cells drive the capacity of HIV1 to kill noncycling primary CD4+ T cells. Cell Death and Differentiation, 2004, 11, 1017-1027.	11.2	16
45	The Density of Coreceptors at the Surface of CD4 ⁻ T Cells Contributes to the Extent of Human Immunodeficiency Virus Type 1 Viral Replication-Mediated T Cell Death. AIDS Research and Human Retroviruses, 2004, 20, 1230-1243.	1.1	2
46	Parameters Driving the Selection of Nelfinavir-Resistant Human Immunodeficiency Virus Type 1 Variants. Journal of Virology, 2003, 77, 10172-10175.	3.4	36
47	Baseline Susceptibility of Primary Human Immunodeficiency Virus Type 1 to Entry Inhibitors. Journal of Virology, 2003, 77, 1610-1613.	3.4	92
48	Impact of antiretroviral treatment on the tropism of HIV-1 plasma virus populations. Aids, 2003, 17, 809-814.	2.2	41
49	Immune reconstitution in HIV-1-infected children on antiretroviral therapy: role of thymic output and viral fitness. Aids, 2002, 16, 839-849.	2.2	62
50	Impaired replication of protease inhibitor-resistant HIV-1 in human thymus. Nature Medicine, 2001, 7, 712-718.	30.7	141
51	Determination of Coreceptor Usage of Human Immunodeficiency Virus Type 1 from Patient Plasma Samples by Using a Recombinant Phenotypic Assay. Journal of Virology, 2001, 75, 251-259.	3.4	100
52	Primary and Recombinant HIV Type 1 Strains Resistant to Protease Inhibitors Are Pathogenic in Mature Human Lymphoid Tissues. AIDS Research and Human Retroviruses, 2001, 17, 517-523.	1.1	20
53	Changes in Human Immunodeficiency Virus Type 1 Populations after Treatment Interruption in Patients Failing Antiretroviral Therapy. Journal of Virology, 2001, 75, 6410-6417.	3.4	123
54	HIV drug resistance and viral fitness. Advances in Pharmacology, 2000, 49, 41-66.	2.0	49

Fabrizio Mammano

#	Article	IF	CITATIONS
55	The Karyophilic Properties of Human Immunodeficiency Virus Type 1 Integrase Are Not Required for Nuclear Import of Proviral DNA. Journal of Virology, 2000, 74, 7119-7126.	3.4	78
56	Retracing the Evolutionary Pathways of Human Immunodeficiency Virus Type 1 Resistance to Protease Inhibitors: Virus Fitness in the Absence and in the Presence of Drug. Journal of Virology, 2000, 74, 8524-8531.	3.4	159
57	Effects of Human Immunodeficiency Virus Type 1 Resistance to Protease Inhibitors on Reverse Transcriptase Processing, Activity, and Drug Sensitivity. Journal of Virology, 1999, 73, 3455-3459.	3.4	41
58	Oligomerization within Virions and Subcellular Localization of Human Immunodeficiency Virus Type 1 Integrase. Journal of Virology, 1999, 73, 5079-5088.	3.4	74
59	Loss of Viral Fitness Associated with Multiple Gag and Gag-Pol Processing Defects in Human Immunodeficiency Virus Type 1 Variants Selected for Resistance to Protease Inhibitors In Vivo. Journal of Virology, 1998, 72, 3300-3306.	3.4	211
60	Resistance-Associated Loss of Viral Fitness in Human Immunodeficiency Virus Type 1: Phenotypic Analysis of Protease and <i>gag</i> Coevolution in Protease Inhibitor-Treated Patients. Journal of Virology, 1998, 72, 7632-7637.	3.4	248
61	Pediatric HIV-1 Infection: Advances and Perspectives in Diagnosis and Prognosis. Antibiotics and Chemotherapy, 1994, 46, 5-17.	0.5	3
62	HTLV-I and HTLV-II infections among HIV-1 seropositive patients in Sao Paulo, Brazil. European Journal of Epidemiology, 1994, 10, 165-171.	5.7	53
63	Mother-to-child HIV-1 transmission: Quantitative assessment of viral burden as a diagnostic tool and prognostic parameter in HIV-1-infected children. Acta Paediatrica, International Journal of Paediatrics, 1994, 83, 25-28.	1.5	4
64	Replication and tropism of human immunodeficiency virus type 1 as predictors of disease outcome in infants with vertically acquired infection. Journal of Pediatrics, 1993, 123, 929-936.	1.8	60
	Pattern of Antibody Response against the V3 Loop in Children with Vertically Acquired		