Fabrizio Mammano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6794800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resistance-Associated Loss of Viral Fitness in Human Immunodeficiency Virus Type 1: Phenotypic Analysis of Protease and <i>gag</i> Coevolution in Protease Inhibitor-Treated Patients. Journal of Virology, 1998, 72, 7632-7637.	3.4	248
2	Loss of Viral Fitness Associated with Multiple Gag and Gag-Pol Processing Defects in Human Immunodeficiency Virus Type 1 Variants Selected for Resistance to Protease Inhibitors In Vivo. Journal of Virology, 1998, 72, 3300-3306.	3.4	211
3	Innate Sensing of HIV-Infected Cells. PLoS Pathogens, 2011, 7, e1001284.	4.7	171
4	Retracing the Evolutionary Pathways of Human Immunodeficiency Virus Type 1 Resistance to Protease Inhibitors: Virus Fitness in the Absence and in the Presence of Drug. Journal of Virology, 2000, 74, 8524-8531.	3.4	159
5	Impaired replication of protease inhibitor-resistant HIV-1 in human thymus. Nature Medicine, 2001, 7, 712-718.	30.7	141
6	Cell-to-cell infection by HIV contributes over half of virus infection. ELife, 2015, 4, .	6.0	137
7	Covert Human Immunodeficiency Virus Replication in Dendritic Cells and in DC-SIGN-Expressing Cells Promotes Long-Term Transmission to Lymphocytes. Journal of Virology, 2005, 79, 5386-5399.	3.4	130
8	Changes in Human Immunodeficiency Virus Type 1 Populations after Treatment Interruption in Patients Failing Antiretroviral Therapy. Journal of Virology, 2001, 75, 6410-6417.	3.4	123
9	Antigen detection, virus culture, polymerase chain reaction, and in vitro antibody production in the diagnosis of vertically transmitted HIV-1 infection. Aids, 1991, 5, 15-20.	2.2	106
10	Determination of Coreceptor Usage of Human Immunodeficiency Virus Type 1 from Patient Plasma Samples by Using a Recombinant Phenotypic Assay. Journal of Virology, 2001, 75, 251-259.	3.4	100
11	Baseline Susceptibility of Primary Human Immunodeficiency Virus Type 1 to Entry Inhibitors. Journal of Virology, 2003, 77, 1610-1613.	3.4	92
12	Determining Human Immunodeficiency Virus Coreceptor Use in a Clinical Setting: Degree of Correlation between Two Phenotypic Assays and a Bioinformatic Model. Journal of Clinical Microbiology, 2007, 45, 279-284.	3.9	90
13	T cell apoptosis characterizes severe Covid-19 disease. Cell Death and Differentiation, 2022, 29, 1486-1499.	11.2	90
14	The Karyophilic Properties of Human Immunodeficiency Virus Type 1 Integrase Are Not Required for Nuclear Import of Proviral DNA. Journal of Virology, 2000, 74, 7119-7126.	3.4	78
15	Role of Minority Populations of Human Immunodeficiency Virus Type 1 in the Evolution of Viral Resistance to Protease Inhibitors. Journal of Virology, 2004, 78, 4234-4247.	3.4	76
16	Molecular Analysis of the HIV-1 Resistance Development: Enzymatic Activities, Crystal Structures, and Thermodynamics of Nelfinavir-resistant HIV Protease Mutants. Journal of Molecular Biology, 2007, 374, 1005-1016.	4.2	74
17	Oligomerization within Virions and Subcellular Localization of Human Immunodeficiency Virus Type 1 Integrase. Journal of Virology, 1999, 73, 5079-5088.	3.4	74

Fabrizio Mammano

#	Article	IF	CITATIONS
19	Polymorphism of the Human Immunodeficiency Virus Type 2 (HIV-2) Protease Gene and Selection of Drug Resistance Mutations in HIV-2-Infected Patients Treated with Protease Inhibitors. Journal of Clinical Microbiology, 2005, 43, 484-487.	3.9	64
20	Immune reconstitution in HIV-1-infected children on antiretroviral therapy: role of thymic output and viral fitness. Aids, 2002, 16, 839-849.	2.2	62
21	Replication and tropism of human immunodeficiency virus type 1 as predictors of disease outcome in infants with vertically acquired infection. Journal of Pediatrics, 1993, 123, 929-936.	1.8	60
22	Role of the Envelope Genetic Context in the Development of Enfuvirtide Resistance in Human Immunodeficiency Virus Type 1-Infected Patients. Journal of Virology, 2006, 80, 8807-8819.	3.4	59
23	Partial Inhibition of Human Immunodeficiency Virus Replication by Type I Interferons: Impact of Cell-to-Cell Viral Transfer. Journal of Virology, 2009, 83, 10527-10537.	3.4	58
24	Hyperthermia Stimulates HIV-1 Replication. PLoS Pathogens, 2012, 8, e1002792.	4.7	55
25	HTLV-I and HTLV-II infections among HIV-1 seropositive patients in Sao Paulo, Brazil. European Journal of Epidemiology, 1994, 10, 165-171.	5.7	53
26	HIV Cell-to-Cell Transmission Requires the Production of Infectious Virus Particles and Does Not Proceed through Env-Mediated Fusion Pores. Journal of Virology, 2012, 86, 3924-3933.	3.4	51
27	HIV drug resistance and viral fitness. Advances in Pharmacology, 2000, 49, 41-66.	2.0	49
28	Automated Genome-Wide Visual Profiling of Cellular Proteins Involved in HIV Infection. Journal of Biomolecular Screening, 2011, 16, 945-958.	2.6	49
29	Role of Gag in HIV Resistance to Protease Inhibitors. Viruses, 2010, 2, 1411-1426.	3.3	46
30	Synthetic peptides from the principal neutralizing domain of human immunodeficiency virus type 1 (HIV-1) enhance HIV-1 infection through a CD4-dependent mechanism. Virology, 1991, 184, 187-196.	2.4	45
31	Impact of antiretroviral treatment on the tropism of HIV-1 plasma virus populations. Aids, 2003, 17, 809-814.	2.2	41
32	Effects of Human Immunodeficiency Virus Type 1 Resistance to Protease Inhibitors on Reverse Transcriptase Processing, Activity, and Drug Sensitivity. Journal of Virology, 1999, 73, 3455-3459.	3.4	41
33	Single-dose pharmacokinetics and pharmacodynamics of oral tenofovir and emtricitabine in blood, saliva and rectal tissue: a sub-study of the ANRS IPERGAY trial. Journal of Antimicrobial Chemotherapy, 2017, 72, 478-485.	3.0	37
34	Parameters Driving the Selection of Nelfinavir-Resistant Human Immunodeficiency Virus Type 1 Variants. Journal of Virology, 2003, 77, 10172-10175.	3.4	36
35	Infection of Epstein-Barr virus-transformed lymphoblastoid B cells by the human immunodeficiency virus: evidence for a persistent and productive infection leading to B cell phenotypic changes. European Journal of Immunology, 1990, 20, 2041-2049.	2.9	34
36	Perinatal infection by human immunodeficiency virus type 1 (HIV–1): Relationship between proviral copy number in vivo, viral properties in vitro, and clinical outcome. Journal of Medical Virology, 1991, 35, 283-289.	5.0	34

#	Article	IF	CITATIONS
37	TIP47 is Required for the Production of Infectious HIV-1 Particles from Primary Macrophages. Traffic, 2010, 11, 455-467.	2.7	32
38	Impact of Natural Polymorphism within the gp41 Cytoplasmic Tail of Human Immunodeficiency Virus Type 1 on the Intracellular Distribution of Envelope Glycoproteins and Viral Assembly. Journal of Virology, 2007, 81, 125-140.	3.4	30
39	Functional Central Polypurine Tract Provides Downstream Protection of the Human Immunodeficiency Virus Type 1 Genome from Editing by APOBEC3G and APOBEC3B. Journal of Virology, 2006, 80, 3679-3683.	3.4	28

40 Pattern of Antibody Response against the V3 Loop in Children with Vertically Acquired

Fabrizio Mammano

#	Article	IF	CITATIONS
55	Early Antiretroviral Therapy Prevents Viral Infection of Monocytes and Inflammation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. Journal of Virology, 2020, 94, .	3.4	7
56	Adult T-Cell Leukemia (ATL): Clinical, Pathological and Virological Findings in Two Cases with Unusual Features. Leukemia and Lymphoma, 1992, 6, 261-266.	1.3	6
57	Kinetics of the establishment of HIV-1 viral interference and comprehensive analysis of the contribution of viral genes. Virology, 2016, 487, 59-67.	2.4	6
58	Counteraction of Tetherin Antiviral Activity by Two Closely Related SIVs Differing by the Presence of a Vpu Gene. PLoS ONE, 2012, 7, e35411.	2.5	6
59	Genotypic and Phenotypic Diversity of the Replication-Competent HIV Reservoir in Treated Patients. Microbiology Spectrum, 2022, 10, .	3.0	6
60	Dynamics of HIV-1 coinfection in different susceptible target cell populations during cell-free infection. Journal of Theoretical Biology, 2018, 455, 39-46.	1.7	5
61	Mother-to-child HIV-1 transmission: Quantitative assessment of viral burden as a diagnostic tool and prognostic parameter in HIV-1-infected children. Acta Paediatrica, International Journal of Paediatrics, 1994, 83, 25-28.	1.5	4
62	Co-infection, super-infection and viral interference in HIV. Retrovirology, 2013, 10, .	2.0	4
63	Differential Inhibition of HIV Replication by the 12 Interferon Alpha Subtypes. Journal of Virology, 2021, 95, e0231120.	3.4	4
64	<i>In vivo</i> selection by enfuvirtide of HIV type-1 <i>env</i> quasispecies with optimal potential for phenotypic expression of HR1 mutations. Antiviral Therapy, 2009, 14, 597-602.	1.0	4
65	Pediatric HIV-1 Infection: Advances and Perspectives in Diagnosis and Prognosis. Antibiotics and Chemotherapy, 1994, 46, 5-17.	0.5	3
66	Anti-HIV-1 Activity of pepRF1, a Proteolysis-Resistant CXCR4 Antagonist Derived from Dengue Virus Capsid Protein. ACS Infectious Diseases, 2021, 7, 6-22.	3.8	3
67	Genetic and phenotypic analyses of sequential vpu alleles from HIV-infected IFN-treated patients. Virology, 2017, 500, 247-258.	2.4	2
68	The Density of Coreceptors at the Surface of CD4 ⁻ T Cells Contributes to the Extent of Human Immunodeficiency Virus Type 1 Viral Replication-Mediated T Cell Death. AIDS Research and Human Retroviruses, 2004, 20, 1230-1243.	1.1	2
69	Differential utilization of CD4+ by transmitted/founder and chronic envelope glycoproteins in a MSM HIV-1 subtype B transmission cluster. Aids, 2020, 34, 2187-2200.	2.2	1
70	Functional Central Polypurine Tract Provides Downstream Protection of the Human Immunodeficiency Virus Type 1 Genome from Editing by APOBEC3G and APOBEC3B. Journal of Virology, 2008, 82, 5116-5116.	3.4	0
71	Env mutations conferring improved entry efficiency allow HIV to replicate in the presence of IFN. Retrovirology, 2013, 10, .	2.0	0
72	Host cell factors in HIV replication: partners and opponents. Virologie, 2013, 17, 145-156.	0.1	0