Joan Montero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6794204/publications.pdf Version: 2024-02-01

IOAN MONTERO

#	Article	IF	CITATIONS
1	Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discovery, 2022, 12, 1217-1232.	9.4	16
2	MEK and MCL-1 sequential inhibition synergize to enhance rhabdomyosarcoma treatment. Cell Death Discovery, 2022, 8, 172.	4.7	4
3	Personalized in vitro Extracellular Matrix Models of Collagen VI-Related Muscular Dystrophies. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851825.	4.1	4
4	LGG-18. Inhibition of Bcl-xL targets the senescent compartment of pilocytic astrocytoma. Neuro-Oncology, 2022, 24, i91-i92.	1.2	0
5	CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity. Nature Cancer, 2021, 2, 34-48.	13.2	48
6	ER+ Breast Cancer Strongly Depends on MCL-1 and BCL-xL Anti-Apoptotic Proteins. Cells, 2021, 10, 1659.	4.1	16
7	Cell Line–Specific Network Models of ER+ Breast Cancer Identify Potential PI3Kα Inhibitor Resistance Mechanisms and Drug Combinations. Cancer Research, 2021, 81, 4603-4617.	0.9	13
8	MCL-1 Inhibition Overcomes Anti-apoptotic Adaptation to Targeted Therapies in B-Cell Precursor Acute Lymphoblastic Leukemia. Frontiers in Cell and Developmental Biology, 2021, 9, 695225.	3.7	4
9	Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells. Cell Death and Disease, 2021, 12, 977.	6.3	33
10	A New CDK9 Inhibitor on the Block to Treat Hematologic Malignancies. Clinical Cancer Research, 2020, 26, 761-763.	7.0	8
11	PI3Kδ inhibition reshapes follicular lymphoma–immune microenvironment cross talk and unleashes the activity of venetoclax. Blood Advances, 2020, 4, 4217-4231.	5.2	23
12	Sequential combinations of chemotherapeutic agents with BH3 mimetics to treat rhabdomyosarcoma and avoid resistance. Cell Death and Disease, 2020, 11, 634.	6.3	17
13	Pooled Genomic Screens Identify Anti-apoptotic Genes as Targetable Mediators of Chemotherapy Resistance in Ovarian Cancer. Molecular Cancer Research, 2019, 17, 2281-2293.	3.4	29
14	Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nature Communications, 2019, 10, 5157.	12.8	46
15	Dual inhibition of MDM2 and MDM4 in virus-positive Merkel cell carcinoma enhances the p53 response. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1027-1032.	7.1	64
16	p21: One protein to rule cell fate. Science Translational Medicine, 2019, 11, .	12.4	2
17	DNA methyltransferase inhibition overcomes diphthamide pathway deficiencies underlying CD123-targeted treatment resistance. Journal of Clinical Investigation, 2019, 129, 5005-5019.	8.2	59
18	The attack of the "seeding―clones. Science Translational Medicine, 2019, 11, .	12.4	0

Joan Montero

#	Article	IF	CITATIONS
19	Dual oncogene excision is greater than the sum of its parts. Science Translational Medicine, 2019, 11, .	12.4	Ο
20	Modeling endometrial disease using organoids. Science Translational Medicine, 2019, 11, .	12.4	0
21	Ingestible macromolecule injectors. Science Translational Medicine, 2019, 11, .	12.4	0
22	A new hope for neuroblastoma treatment?. Science Translational Medicine, 2019, 11, .	12.4	0
23	Why do BCL-2 inhibitors work and where should we use them in the clinic?. Cell Death and Differentiation, 2018, 25, 56-64.	11.2	251
24	The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox Biology, 2018, 14, 164-177.	9.0	59
25	Blastic Plasmacytoid Dendritic Cell Neoplasm Is Dependent on BCL2 and Sensitive to Venetoclax. Cancer Discovery, 2017, 7, 156-164.	9.4	164
26	Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Science Translational Medicine, 2017, 9, .	12.4	155
27	Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget, 2017, 8, 16220-16232.	1.8	22
28	Dynamic BH3 profiling-poking cancer cells with a stick. Molecular and Cellular Oncology, 2016, 3, e1040144.	0.7	24
29	The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer Cell, 2016, 29, 574-586.	16.8	227
30	iBH3: simple, fixable BH3 profiling to determine apoptotic priming in primary tissue by flow cytometry. Biological Chemistry, 2016, 397, 671-678.	2.5	94
31	Drug-Induced Death Signaling Strategy Rapidly Predicts Cancer Response to Chemotherapy. Cell, 2015, 160, 977-989.	28.9	295
32	Activity of the Type II JAK2 Inhibitor CHZ868 in B Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 29-41.	16.8	95
33	Type II JAK2 Inhibitor NVP-CHZ868 Is Active in Vivo Against JAK2-Dependent B-Cell Acute Lymphoblastic Leukemias (B-ALLs). Blood, 2014, 124, 3713-3713.	1.4	1
34	BID Preferentially Activates BAK while BIM Preferentially Activates BAX, Affecting Chemotherapy Response. Molecular Cell, 2013, 51, 751-765.	9.7	200
35	<scp>KPT</scp> â€330 inhibitor of <scp>CRM</scp> 1 (<scp>XPO</scp> 1)â€mediated nuclear export has selective antiâ€leukaemic activity in preclinical models of <scp>T</scp> â€cell acute lymphoblastic leukaemia and acute myeloid leukaemia. British Journal of Haematology, 2013, 161, 117-127.	2.5	149
36	p53 regulates a non-apoptotic death induced by ROS. Cell Death and Differentiation, 2013, 20, 1465-1474.	11.2	115

#	Article	IF	CITATIONS
37	Reactivation of ERK Signaling Causes Resistance to EGFR Kinase Inhibitors. Cancer Discovery, 2012, 2, 934-947.	9.4	255
38	Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1217-1224.	1.0	90
39	Mitochondrial Cholesterol Contributes to Chemotherapy Resistance in Hepatocellular Carcinoma. Cancer Research, 2008, 68, 5246-5256.	0.9	219