Xinping Duan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6793566/publications.pdf Version: 2024-02-01

XINDING DUAN

#	Article	IF	CITATIONS
1	Lanthanum Oxide-Modified Cu/SiO ₂ as a High-Performance Catalyst for Chemoselective Hydrogenation of Dimethyl Oxalate to Ethylene Glycol. ACS Catalysis, 2013, 3, 2738-2749.	11.2	211
2	Interfacing with silica boosts the catalysis of copper. Nature Communications, 2018, 9, 3367.	12.8	159
3	CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu–LaOx interfaces. Applied Catalysis B: Environmental, 2019, 251, 119-129.	20.2	128
4	Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Catalysis, 2013, 307, 74-83.	6.2	123
5	Efficient low-temperature selective hydrogenation of esters on bimetallic Au–Ag/SBA-15 catalyst. Journal of Catalysis, 2013, 297, 110-118.	6.2	116
6	Remarkable enhancement of Cu catalyst activity in hydrogenation of dimethyl oxalate to ethylene glycol using gold. Catalysis Science and Technology, 2012, 2, 1637.	4.1	95
7	Rational design of sensitivity enhanced and stability improved TEA gas sensor assembled with Pd nanoparticles-functionalized In2O3 composites. Sensors and Actuators B: Chemical, 2019, 285, 1-10.	7.8	93
8	Role of sulfur in hydrotreating catalysis over nickel phosphide. Journal of Catalysis, 2009, 261, 232-240.	6.2	92
9	Ambient-pressure synthesis of ethylene glycol catalyzed by C ₆₀ -buffered Cu/SiO ₂ . Science, 2022, 376, 288-292.	12.6	88
10	Self- regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nature Communications, 2019, 10, 914.	12.8	86
11	Hydrodesulfurization of dibenzothiophene, 4,6-dimethyldibenzothiophene, and their hydrogenated intermediates over bulk tungsten phosphide. Journal of Catalysis, 2015, 330, 330-343.	6.2	75
12	Enhanced Performance of Zn–Sn/HZSM-5 Catalyst for the Conversion of Methanol to Aromatics. Catalysis Letters, 2013, 143, 798-806.	2.6	71
13	Cu/SiO2 hybrid catalysts containing HZSM-5 with enhanced activity and stability for selective hydrogenation of dimethyl oxalate to ethylene glycol. Applied Catalysis A: General, 2012, 445-446, 287-296.	4.3	69
14	Improved performance of magnetically recoverable Ce-promoted Ni/Al2O3 catalysts for aqueous-phase hydrogenolysis of sorbitol to glycols. Catalysis Today, 2012, 183, 65-71.	4.4	67
15	Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate. Nanoscale, 2016, 8, 5959-5967.	5.6	63
16	Highly efficient mesostructured Ag/SBA-15 catalysts for the chemoselective synthesis of methyl glycolate by dimethyl oxalate hydrogenation. Catalysis Communications, 2013, 40, 129-133.	3.3	57
17	Production of ethanol by gas phase hydrogenation of acetic acid over carbon nanotube-supported Pt–Sn nanoparticles. Catalysis Today, 2013, 215, 260-266.	4.4	55
18	CO-Mediated Deactivation Mechanism of SiO ₂ -Supported Copper Catalysts during Dimethyl Oxalate Hydrogenation to Ethylene Glycol. Journal of Physical Chemistry C, 2015, 119, 13758-13766.	3.1	50

XINPING DUAN

#	Article	IF	CITATIONS
19	Selective methylation of toluene using CO ₂ and H ₂ to <i>para</i> -xylene. Science Advances, 2020, 6, .	10.3	50
20	Selective hydrogenation of CO ₂ to methanol catalyzed by Cu supported on rod-like La ₂ O ₂ CO ₃ . Catalysis Science and Technology, 2018, 8, 1062-1069.	4.1	49
21	Enhanced chemoselective hydrogenation of dimethyl oxalate to methyl glycolate over bimetallic Ag–Ni/SBA-15 catalysts. Applied Catalysis A: General, 2015, 505, 344-353.	4.3	47
22	Size controllable redispersion of sintered Au nanoparticles by using iodohydrocarbon and its implications. Chemical Science, 2016, 7, 3181-3187.	7.4	46
23	Copper nanoparticles socketed in situ into copper phyllosilicate nanotubes with enhanced performance for chemoselective hydrogenation of esters. Chemical Communications, 2017, 53, 6933-6936.	4.1	44
24	Core-shell Ag@In2O3 hollow hetero-nanostructures for selective ethanol detection in air. Sensors and Actuators B: Chemical, 2020, 305, 127450.	7.8	44
25	Hydrodesulfurization of 4,6-dimethyldibenzothiophene and its hydrogenated intermediates over bulk Ni2P. Journal of Catalysis, 2014, 317, 144-152.	6.2	42
26	Hydrodenitrogenation of Quinoline Catalyzed by MCM-41-Supported Nickel Phosphides. Energy & Fuels, 2007, 21, 554-560.	5.1	39
27	Structural tuning and catalysis of tungsten carbides for the regioselective cleavage of C O bonds. Journal of Catalysis, 2019, 369, 283-295.	6.2	38
28	Electrochemical sensor to environmental pollutant of acetone based on Pd-loaded on mesoporous In2O3 architecture. Sensors and Actuators B: Chemical, 2019, 290, 217-225.	7.8	35
29	PVP-stabilized heteropolyacids as reusable self-assembling catalysts for alcoholysis of cellulosic saccharides. Green Chemistry, 2014, 16, 294-302.	9.0	34
30	Photodeposition of Pd onto TiO ₂ nanowires for aqueous-phase selective hydrogenation of phenolics to cyclohexanones. Nanoscale, 2020, 12, 2603-2612.	5.6	32
31	Effect of TiO2 on hydrodenitrogenation performances of MCM-41 supported molybdenum phosphides. Catalysis Today, 2010, 149, 11-18.	4.4	31
32	Preparation of Ni 2 P/Al 2 O 3 by temperature-programmed reduction of a phosphate precursor with a low P/Ni ratio. Journal of Catalysis, 2016, 334, 116-119.	6.2	31
33	Fabrication of supported Au-CuO nanohybrids by reduction-oxidation strategy for efficient oxidative esterification of 5-hydroxymethyl-2-furfural into dimethyl furan-2,5-dicarboxylate. Applied Catalysis A: General, 2018, 567, 80-89.	4.3	30
34	Synthesis of a Ni Phyllosilicate with Controlled Morphology for Deep Hydrogenation of Polycyclic Aromatic Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 1989-1997.	6.7	28
35	FeSBA-15-supported ruthenium catalyst for the selective hydrogenolysis of carboxylic acids to alcoholic chemicals. Catalysis Today, 2015, 251, 53-59.	4.4	27
36	Effective anchoring of silver nanoparticles onto N-doped carbon with enhanced catalytic performance for the hydrogenation of dimethyl oxalate to methyl glycolate. Catalysis Communications, 2017, 100, 148-152.	3.3	24

XINPING DUAN

#	Article	IF	CITATIONS
37	Intercalation of nanostructured CeO ₂ in MgAl ₂ O ₄ spinel illustrates the critical interaction between metal oxides and oxides. Nanoscale, 2018, 10, 3331-3341.	5.6	23
38	Tandem Hydrogenolysis–Hydrogenation of Ligninâ€Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations. ChemSusChem, 2019, 12, 5199-5206.	6.8	18
39	Influences of calcination and reduction methods on the preparation of Ni2P/SiO2 and its hydrodenitrogenation performance. Applied Catalysis A: General, 2016, 509, 45-51.	4.3	17
40	Regioselective hydrogenolysis of aryl ether C–O bonds by tungsten carbides with controlled phase compositions. Chemical Communications, 2017, 53, 10295-10298.	4.1	17
41	Yttrium chloride-modified Au/AC catalysts for acetylene hydrochlorination with improved activity and stability. Journal of Rare Earths, 2017, 35, 1083-1091.	4.8	17
42	Improvement toluene detection of gas sensors based on flower-like porous indium oxide nanosheets. Journal of Alloys and Compounds, 2022, 897, 163222.	5.5	17
43	Vapor-phase hydrogenation of dimethyl oxalate over a CNTs–Cu–SiO2 hybrid catalyst with enhanced activity and stability. RSC Advances, 2013, 3, 11782.	3.6	16
44	Atomic ruthenium stabilized on vacancy-rich boron nitride for selective hydrogenation of esters. Journal of Catalysis, 2022, 406, 115-125.	6.2	16
45	C–X (X = Cl, Br, I) bond dissociation energy as a descriptor for the redispersion of sintered Au/AC catalysts. Chinese Journal of Catalysis, 2016, 37, 1794-1803.	14.0	15
46	Synergistic effects of bimetallic Cu-Fe/SiO 2 nanocatalysts in selective hydrogenation of diethyl malonate to 1,3-propanediol. Journal of Energy Chemistry, 2016, 25, 1038-1044.	12.9	15
47	Sulfur Moiety as a Double-Edged Sword for Realizing Ultrafine Supported Metal Nanoclusters with a Cationic Nature. ACS Applied Materials & Interfaces, 2019, 11, 11317-11326.	8.0	15
48	Efficient low-temperature soot combustion by bimetallic Ag–Cu/SBA-15 catalysts. Journal of Environmental Sciences, 2018, 64, 122-129.	6.1	13
49	Low-temperature soot combustion over ceria modified MgAl2O4-supported Ag nanoparticles. Catalysis Communications, 2018, 111, 26-30.	3.3	12
50	Spatial Ensembles of Copper-Silica with Carbon Nanotubes as Ultrastable Nanostructured Catalysts for Selective Hydrogenation. ACS Applied Materials & amp; Interfaces, 2020, 12, 27268-27276.	8.0	10
51	XAS study of Ni2P/MCM-41 passivated by O2/He and H2S/H2. Catalysis Communications, 2014, 43, 21-24.	3.3	9
52	Promoted chemoselective crotonaldehyde hydrogenation on zirconia-doped SiO2 supported Ag catalysts: Interfacial catalysis over ternary Ag–ZrO2–SiO2 interfaces. Journal of Catalysis, 2019, 372, 19-32.	6.2	9