Jakob Tarp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6791433/publications.pdf

Version: 2024-02-01

471509 289244 1,974 42 17 40 citations h-index g-index papers 43 43 43 3264 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recommendations for Determining the Validity of Consumer Wearables and Smartphones for the Estimation of Energy Expenditure: Expert Statement and Checklist of the INTERLIVE Network. Sports Medicine, 2022, 52, 1817-1832.	6.5	11
2	Device-measured sedentary time in Norwegian children and adolescents in the era of ubiquitous internet access: secular changes between 2005, 2011 and 2018. International Journal of Epidemiology, 2022, 51, 1556-1567.	1.9	5
3	Device-measured physical activity, adiposity and mortality: a harmonised meta-analysis of eight prospective cohort studies. British Journal of Sports Medicine, 2022, 56, 725-732.	6.7	12
4	Effect modification by cardiorespiratory fitness on the association between physical activity and cardiometabolic health in youth: A systematic review. Journal of Sports Sciences, 2021, 39, 845-853.	2.0	4
5	Physical Activity and Mortality Across Levels of Adiposity. Mayo Clinic Proceedings, 2021, 96, 105-119.	3.0	16
6	School-based interventions modestly increase physical activity and cardiorespiratory fitness but are least effective for youth who need them most: an individual participant pooled analysis of 20 controlled trials. British Journal of Sports Medicine, 2021, 55, 721-729.	6.7	36
7	Does Additional Physical Education Improve Exam Performance at the End of Compulsory Education? A Secondary Analysis from a Natural Experiment: The CHAMPS-Study DK. Children, 2021, 8, 57.	1.5	4
8	Stair climbing and mortality: a prospective cohort study from the UK Biobank. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 298-307.	7.3	13
9	Fitness, Fatness, and Mortality in Men and Women From the UK Biobank: Prospective Cohort Study. Journal of the American Heart Association, 2021, 10, e019605.	3.7	16
10	Occupational physical activity and longevity in working men and women in Norway: a prospective cohort study. Lancet Public Health, The, 2021, 6, e386-e395.	10.0	49
11	The role of occupational physical activity on longevity – Authors' reply. Lancet Public Health, The, 2021, 6, e545.	10.0	O
12	Joint associations of accelerometer-measured physical activity and sedentary time with all-cause mortality: a harmonised meta-analysis in more than 44 000 middle-aged and older individuals. British Journal of Sports Medicine, 2020, 54, 1499-1506.	6.7	161
13	Weekly variation in markers of cardiometabolic health $\hat{a}\in$ " the possible effect of weekend behavior $\hat{a}\in$ " aÂcross-sectional study. BMC Cardiovascular Disorders, 2020, 20, 405.	1.7	2
14	Step by step: Association of deviceâ€measured daily steps with allâ€cause mortalityâ€"A prospective cohort Study. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 1705-1711.	2.9	31
15	Accelerometer-measured physical activity and sedentary time in a cohort of US adults followed for up to 13 years: the influence of removing early follow-up on associations with mortality. International Journal of Behavioral Nutrition and Physical Activity, 2020, 17, 39.	4.6	38
16	Physical activity and mortality: what is the dose response and how big is the effect?. British Journal of Sports Medicine, 2020, 54, 1125-1126.	6.7	47
17	Double counting individuals in metaâ€analysis artificially inflates precision. Comment on "Deviceâ€measured lightâ€intensity physical activity and mortality: A metaâ€analysis― Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 1083-1084.	2.9	1
18	Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ: British Medical Journal, 2019, 366, 14570.	2.3	856

#	Article	IF	CITATIONS
19	Cardiorespiratory fitness, muscular strength and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetologia, 2019, 62, 1129-1142.	6.3	104
20	Bone mass development is sensitive to insulin resistance in adolescent boys. Bone, 2019, 122, 1-7.	2.9	10
21	Bone Mass Development in Childhood and Its Association with Physical Activity and Vitamin D Levels. The CHAMPS-Study DK. Calcified Tissue International, 2019, 104, 1-13.	3.1	9
22	Muscle Fitness Changes During Childhood Associates With Improvements in Cardiometabolic Risk Factors: A Prospective Study. Journal of Physical Activity and Health, 2019, 16, 108-115.	2.0	5
23	Comment on: "Cardiorespiratory Fitness in Childhood and Adolescence Affects Future Cardiovascular Risk Factors: A Systematic Review of Longitudinal Studies― Sports Medicine, 2019, 49, 159-161.	6.5	5
24	Associations Between Cardiorespiratory Fitness and Brain-derived Neurotrophic Factor In Serum and Platelets-poor Plasma. Medicine and Science in Sports and Exercise, 2019, 51, 988-988.	0.4	0
25	Retinal vascular diameters in relation to physical activity in Danish children â€" The <scp>CHAMPS</scp> Eye Study. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 1897-1907.	2.9	6
26	Influence of a 2―to 6â€year physical education intervention on scholastic performance: The <scp>CHAMPS</scp> studyâ€ <scp>DK</scp> . Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 228-236.	2.9	17
27	Does adiposity mediate the relationship between physical activity and biological risk factors in youth?: a cross-sectional study from the International Childrenâ \in TM s Accelerometry Database (ICAD). International Journal of Obesity, 2018, 42, 671-678.	3.4	6
28	Prevalence of overweight and obesity and anthropometric reference centiles for Albanian children and adolescents living in four Balkan nation-states. Journal of Pediatric Endocrinology and Metabolism, 2018, 31, 1199-1206.	0.9	8
29	Associations Between Aerobic Fitness and Cognitive Control in Adolescents. Frontiers in Psychology, 2018, 9, 1298.	2.1	51
30	The acute effects of short bouts of exercise on inhibitory control in adolescents. Mental Health and Physical Activity, 2018, 15, 34-39.	1.8	10
31	Physical activity intensity, bout-duration, and cardiometabolic risk markers in children and adolescents. International Journal of Obesity, 2018, 42, 1639-1650.	3.4	102
32	Long-term follow-up on biological risk factors, adiposity, and cardiorespiratory fitness development in a physical education intervention: a natural experiment (CHAMPS-study DK). BMC Public Health, 2018, 18, 605.	2.9	8
33	Associations between waist circumference, metabolic risk and executive function in adolescents: A cross-sectional mediation analysis. PLoS ONE, 2018, 13, e0199281.	2.5	12
34	Cross-sectional associations of objectively measured physical activity with brain-derived neurotrophic factor in adolescents. Physiology and Behavior, 2017, 171, 87-91.	2.1	16
35	The association between serum brain-derived neurotrophic factor and a cluster of cardiovascular risk factors in adolescents: The CHAMPS-study DK. PLoS ONE, 2017, 12, e0186384.	2.5	15
36	Associations of Physical Activity, Sports Participation and Active Commuting on Mathematic Performance and Inhibitory Control in Adolescents. PLoS ONE, 2016, 11, e0146319.	2.5	32

#	Article	IF	CITATIONS
37	Physical activity, sedentary behavior, and long-term cardiovascular risk in young people: A review and discussion of methodology in prospective studies. Journal of Sport and Health Science, 2016, 5, 145-150.	6.5	28
38	Effectiveness of a School-Based Physical Activity Intervention on Cognitive Performance in Danish Adolescents: LCoMotion—Learning, Cognition and Motion – A Cluster Randomized Controlled Trial. PLoS ONE, 2016, 11, e0158087.	2.5	58
39	Quantification of Underestimation of Physical Activity During Cycling to School When Using Accelerometry. Journal of Physical Activity and Health, 2015, 12, 701-707.	2.0	29
40	Associations of Adiposity and Aerobic Fitness with Executive Function andÂMath Performance in Danish Adolescents. Journal of Pediatrics, 2015, 167, 810-815.	1.8	67
41	Do extra compulsory physical education lessons mean more physically active children - findings from the childhood health, activity, and motor performance school study Denmark (The CHAMPS-study DK). International Journal of Behavioral Nutrition and Physical Activity, 2014, 11, 121.	4.6	64
42	LCoMotion – Learning, Cognition and Motion; a multicomponent cluster randomized school-based intervention aimed at increasing learning and cognition - rationale, design and methods. BMC Public Health, 2014, 14, 967.	2.9	10