List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6790589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An iterative morphological difference product wavelet for weak fault feature extraction in rolling bearing fault diagnosis. Structural Health Monitoring, 2023, 22, 296-318.	7.5	7
2	Intelligent Fault Detection for Rotating Machinery Using Cyclic Morphological Modulation Spectrum and Hierarchical Teager Permutation Entropy. IEEE Transactions on Industrial Informatics, 2023, 19, 6196-6207.	11.3	10
3	Interactive Visual Simulation Modeling for Structural Response Prediction and Damage Detection. IEEE Transactions on Industrial Electronics, 2022, 69, 868-878.	7.9	3
4	Evaluation Method for Feature Selection in Proton Exchange Membrane Fuel Cell Fault Diagnosis. IEEE Transactions on Industrial Electronics, 2022, 69, 5277-5286.	7.9	5
5	Parametric Doppler correction analysis for wayside acoustic bearing fault diagnosis. Mechanical Systems and Signal Processing, 2022, 166, 108375.	8.0	12
6	Multiple Frequency Modulation Components Detection and Decomposition for Rotary Machine Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	4.7	1
7	Evaluation of Lithium-Ion Battery Pack Capacity Consistency Using One-Dimensional Magnetic Field Scanning. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	4.7	4
8	IC Curve-Based Lithium-Ion Battery SOC Estimation at High Rate Charging Current. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	4.7	13
9	Stimuli-responsive metamaterials with information-driven elastodynamics programming. Matter, 2022, 5, 988-1003.	10.0	12
10	Dynamic mass isolation method utilized in self-moving precision positioning stage for improved speed performance. Review of Scientific Instruments, 2022, 93, 055004.	1.3	0
11	Scattering-coded architectured boundary for computational sensing of elastic waves. Cell Reports Physical Science, 2022, 3, 100918.	5.6	3
12	Gearbox fault diagnosis under nonstationary condition using nonlinear chirp components extracted from bearing force. Mechanical Systems and Signal Processing, 2022, 180, 109440.	8.0	10
13	Manifold Sensing-Based Convolution Sparse Self-Learning for Defective Bearing Morphological Feature Extraction. IEEE Transactions on Industrial Informatics, 2021, 17, 3069-3078.	11.3	42
14	A novel method for polymer electrolyte membrane fuel cell fault diagnosis using 2D data. Journal of Power Sources, 2021, 482, 228894.	7.8	21
15	Smart metasurface shaft for vibration source identification with a single sensor. Journal of Sound and Vibration, 2021, 493, 115836.	3.9	9
16	Long-Term Performance Prediction of PEMFC Based on LASSO-ESN. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	4.7	9
17	Oscillation based permutation entropy calculation as a dynamic nonlinear feature for health monitoring of rolling element bearing. Measurement: Journal of the International Measurement Confederation, 2021, 172, 108891.	5.0	25
18	Origami-based adjustable sound-absorbing metamaterial. Smart Materials and Structures, 2021, 30, 057002.	3.5	15

#	Article	IF	CITATIONS
19	Time-Frequency Bandpass Filter with Nonstationary Signal Decomposition Application. Journal of Physics: Conference Series, 2021, 1880, 012003.	0.4	2

An Interpretable Denoising Layer for Neural Networks Based on Reproducing Kernel Hilbert Space and its Application in Machine Fault Diagnosis. Chinese Journal of Mechanical Engineering (English) Tj ETQq0 0 0 rgBT /@varlock 120Tf 50 69 20

21	Gearbox fault diagnosis based on bearing dynamic force identification. Journal of Sound and Vibration, 2021, 511, 116360.	3.9	13
22	Gearbox Condition Monitoring Using Sparse Filtering and Parameterized Time–Frequency Analysis. Lecture Notes in Mechanical Engineering, 2021, , 105-113.	0.4	1
23	Hybrid Pre-Training Strategy for Deep Denoising Neural Networks and Its Application in Machine Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	4.7	9
24	Fault diagnosis of rotating machines based on the EMD manifold. Mechanical Systems and Signal Processing, 2020, 135, 106443.	8.0	135
25	<i>In Situ</i> Motor Fault Diagnosis Using Enhanced Convolutional Neural Network in an Embedded System. IEEE Sensors Journal, 2020, 20, 8287-8296.	4.7	45
26	Time-Varying Motion Filtering for Vision-Based Nonstationary Vibration Measurement. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 3907-3916.	4.7	14
27	Stiffness-mass-coding metamaterial with broadband tunability for low-frequency vibration isolation. Journal of Sound and Vibration, 2020, 489, 115685.	3.9	26
28	Vision-based vibration measurement by sensing motion of spider silk. Procedia Manufacturing, 2020, 49, 126-131.	1.9	4
29	Vibration Characteristics of Rolling Element Bearings with Different Radial Clearances for Condition Monitoring of Wind Turbine. Applied Sciences (Switzerland), 2020, 10, 4731.	2.5	37
29 30	Vibration Characteristics of Rolling Element Bearings with Different Radial Clearances for Condition Monitoring of Wind Turbine. Applied Sciences (Switzerland), 2020, 10, 4731. Doppler distortion removal based on Dopplerlet transform and re-sampling for wayside fault diagnosis of train bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, , 095440622096956.	2.5	37
29 30 31	 Vibration Characteristics of Rolling Element Bearings with Different Radial Clearances for Condition Monitoring of Wind Turbine. Applied Sciences (Switzerland), 2020, 10, 4731. Doppler distortion removal based on Dopplerlet transform and re-sampling for wayside fault diagnosis of train bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, , 095440622096956. Effectiveness of PEMFC historical state and operating mode in PEMFC prognosis. International Journal of Hydrogen Energy, 2020, 45, 32355-32366. 	2.5 2.1 7.1	37 1 39
29 30 31 32	Vibration Characteristics of Rolling Element Bearings with Different Radial Clearances for Condition Monitoring of Wind Turbine. Applied Sciences (Switzerland), 2020, 10, 4731.Doppler distortion removal based on Dopplerlet transform and re-sampling for wayside fault diagnosis of train bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, , 095440622096956.Effectiveness of PEMFC historical state and operating mode in PEMFC prognosis. International Journal of Hydrogen Energy, 2020, 45, 32355-32366.A scale independent flexible bearing health monitoring index based on time frequency manifold energy & entropy. Measurement Science and Technology, 2020, 31, 114003.	 2.5 2.1 7.1 2.6 	37 1 39 26
29 30 31 32 33	Vibration Characteristics of Rolling Element Bearings with Different Radial Clearances for Condition Monitoring of Wind Turbine. Applied Sciences (Switzerland), 2020, 10, 4731.Doppler distortion removal based on Dopplerlet transform and re-sampling for wayside fault diagnosis of train bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, , 095440622096956.Effectiveness of PEMFC historical state and operating mode in PEMFC prognosis. International Journal of Hydrogen Energy, 2020, 45, 32355-32366.A scale independent flexible bearing health monitoring index based on time frequency manifold energy & amp; entropy. Measurement Science and Technology, 2020, 31, 114003.Vision-Based Moving Mass Detection by Time-Varying Structure Vibration Monitoring. IEEE Sensors Journal, 2020, 20, 11566-11577.	2.5 2.1 7.1 2.6 4.7	37 1 39 26 11
29 30 31 32 33 34	Vibration Characteristics of Rolling Element Bearings with Different Radial Clearances for Condition Monitoring of Wind Turbine. Applied Sciences (Switzerland), 2020, 10, 4731. Doppler distortion removal based on Dopplerlet transform and re-sampling for wayside fault diagnosis of train bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, , 095440622096956. Effectiveness of PEMFC historical state and operating mode in PEMFC prognosis. International Journal of Hydrogen Energy, 2020, 45, 32355-32366. A scale independent flexible bearing health monitoring index based on time frequency manifold energy & amp; entropy. Measurement Science and Technology, 2020, 31, 114003. Vision-Based Moving Mass Detection by Time-Varying Structure Vibration Monitoring. IEEE Sensors Journal, 2020, 20, 11566-11577. Randomized resonant metamaterials for single-sensor identification of elastic vibrations. Nature Communications, 2020, 11, 2353.	 2.5 2.1 7.1 2.6 4.7 12.8 	37 1 39 26 11 28
29 30 31 32 33 34 35	Vibration Characteristics of Rolling Element Bearings with Different Radial Clearances for Condition Monitoring of Wind Turbine. Applied Sciences (Switzerland), 2020, 10, 4731. Doppler distortion removal based on Dopplerlet transform and re-sampling for wayside fault diagnosis of train bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, , 095440622096956. Effectiveness of PEMFC historical state and operating mode in PEMFC prognosis. International Journal of Hydrogen Energy, 2020, 45, 32355-32366. A scale independent flexible bearing health monitoring index based on time frequency manifold energy & entropy. Measurement Science and Technology, 2020, 31, 114003. Vision-Based Moving Mass Detection by Time-Varying Structure Vibration Monitoring. IEEE Sensors Journal, 2020, 20, 11566-11577. Randomized resonant metamaterials for single-sensor identification of elastic vibrations. Nature Communications, 2020, 11, 2353. Tacholess bearing fault detection based on adaptive impulse extraction in the time domain under fluctuant speed. Measurement Science and Technology, 2020, 31, 074004.	 2.5 2.1 7.1 2.6 4.7 12.8 2.6 	 37 1 39 26 11 28 16

#	Article	IF	CITATIONS
37	Feature Clustering Analysis Using Reference Model towards Rolling Bearing Performance Degradation Assessment. Shock and Vibration, 2020, 2020, 1-14.	0.6	3
38	Fibonacci array-based focused acoustic camera for estimating multiple moving sound sources. Journal of Sound and Vibration, 2020, 478, 115351.	3.9	7
39	A Novel Method for Periodical Impulses Detection and Its Applications in Rubbing Fault Diagnosis. Smart Innovation, Systems and Technologies, 2020, , 747-759.	0.6	0
40	Frequency-domain intrinsic component decomposition for multimodal signals with nonlinear group delays. Signal Processing, 2019, 154, 57-63.	3.7	10
41	A review of stochastic resonance in rotating machine fault detection. Mechanical Systems and Signal Processing, 2019, 116, 230-260.	8.0	279
42	Doppler distortion elimination using short-time sparse singular value decomposition strategy for wayside acoustic source fault diagnosis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 5499-5514.	2.1	1
43	Transient feature self-enhancement via shift-invariant manifold sparse learning for rolling bearing health diagnosis. Measurement: Journal of the International Measurement Confederation, 2019, 148, 106957.	5.0	14
44	Doppler Distortion Removal in Wayside Circular Microphone Array Signals. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 1238-1251.	4.7	5
45	Transient Feature Extraction Based on Time–Frequency Manifold Image Synthesis for Machinery Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 4242-4252.	4.7	23
46	Design of a three degrees-of-freedom biomimetic microphone array based on a coupled circuit. Measurement Science and Technology, 2019, 30, 065101.	2.6	6
47	Separating Multiple Moving Sources by Microphone Array Signals for Wayside Acoustic Fault Diagnosis. Journal of Vibration and Acoustics, Transactions of the ASME, 2019, 141, .	1.6	2
48	Fast time-frequency manifold learning and its reconstruction for transient feature extraction in rotating machinery fault diagnosis. Measurement: Journal of the International Measurement Confederation, 2019, 141, 380-395.	5.0	55
49	Proposal for the Realization of a Single-Detector Acoustic Camera Using a Space-Coiling Anisotropic Metamaterial. Physical Review Applied, 2019, 11, .	3.8	21
50	High-accuracy fault feature extraction for rolling bearings under time-varying speed conditions using an iterative envelope-tracking filter. Journal of Sound and Vibration, 2019, 448, 211-229.	3.9	61
51	Combining Spatial Filtering and Sparse Filtering for Coaxial-Moving Sound Source Separation, Enhancement and Fault Diagnosis. IEEE Access, 2019, 7, 25150-25162.	4.2	7
52	An Effective Accuracy Evaluation Method for LFMCW Radar Displacement Monitoring With Phasor Statistical Analysis. IEEE Sensors Journal, 2019, 19, 12224-12234.	4.7	14
53	Transient Signal Analysis Using Parallel Time-Frequency Manifold Filtering for Bearing Health Diagnosis. IEEE Access, 2019, 7, 175277-175289.	4.2	2
54	Study on intra-wave frequency modulation phenomenon in detection of rub-impact fault. Mechanical Systems and Signal Processing, 2019, 122, 342-363.	8.0	32

#	Article	IF	CITATIONS
55	Multi-Scale Stochastic Resonance Spectrogram for fault diagnosis of rolling element bearings. Journal of Sound and Vibration, 2018, 420, 174-184.	3.9	70
56	Bearing fault diagnosis of a permanent magnet synchronous motor via a fast and online order analysis method in an embedded system. Mechanical Systems and Signal Processing, 2018, 113, 36-49.	8.0	69
57	Automatic bearing fault diagnosis of permanent magnet synchronous generators in wind turbines subjected to noise interference. Measurement Science and Technology, 2018, 29, 025002.	2.6	18
58	Multi-bearing weak defect detection for wayside acoustic diagnosis based on a time-varying spatial filtering rearrangement. Mechanical Systems and Signal Processing, 2018, 100, 224-241.	8.0	36
59	Enhanced directional acoustic sensing with phononic crystal cavity resonance. Applied Physics Letters, 2018, 112, .	3.3	31
60	Feature-difference sparse filtering for bearing health monitoring. , 2018, , .		2
61	Doppler effect removal based on short-time sparse SVD strategy for wayside acoustic source monitoring. , 2018, , .		1
62	Signal separation and correction with multiple Doppler acoustic sources for wayside fault diagnosis of train bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231, 2664-2680.	2.1	1
63	Online Fault Diagnosis of Motor Bearing via Stochastic-Resonance-Based Adaptive Filter in an Embedded System. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 1111-1122.	9.3	77
64	Frequency-shift vibro-acoustic modulation driven by low-frequency broadband excitations in a bistable cantilever oscillator. Measurement Science and Technology, 2017, 28, 037002.	2.6	3
65	Nonlinear Damage Localization in Structures Using Nonlinear Vibration Modulation of Ultrasonic-Guided Waves. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, .	1.6	2
66	Doppler Correction Using Short-Time MUSIC and Angle Interpolation Resampling for Wayside Acoustic Defective Bearing Diagnosis. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 671-680.	4.7	18
67	Dual-directionally tunable metamaterial for low-frequency vibration isolation. Applied Physics Letters, 2017, 110, .	3.3	31
68	Energy-Fluctuated Multiscale Feature Learning With Deep ConvNet for Intelligent Spindle Bearing Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 1926-1935.	4.7	372
69	A computer-vision-based rotating speed estimation method for motor bearing fault diagnosis. Measurement Science and Technology, 2017, 28, 065012.	2.6	22
70	Time-Frequency Manifold for Machinery Fault Diagnosis. Smart Sensors, Measurement and Instrumentation, 2017, , 131-154.	0.6	2
71	Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure. Applied Physics Letters, 2017, 110, .	3.3	29
72	Doppler distortion correction based on microphone array and matching pursuit algorithm for a wayside train bearing monitoring system. Measurement Science and Technology, 2017, 28, 105006.	2.6	8

#	Article	IF	CITATIONS
73	Rotating machine fault diagnosis through enhanced stochastic resonance by full-wave signal construction. Mechanical Systems and Signal Processing, 2017, 85, 82-97.	8.0	75
74	Wayside Bearing Fault Diagnosis Based on Envelope Analysis Paved with Time-Domain Interpolation Resampling and Weighted-Correlation-Coefficient-Guided Stochastic Resonance. Shock and Vibration, 2017, 2017, 1-17.	0.6	9
75	Fault Diagnosis of Motor Bearing by Analyzing a Video Clip. Mathematical Problems in Engineering, 2016, 2016, 1-11.	1.1	2
76	Two-class model based on nonlinear manifold learning for bearing health monitoring. , 2016, , .		2
77	A novel diversiform stochastic resonance of a domain wall and its performance at different states. Modern Physics Letters B, 2016, 30, 1650167.	1.9	1
78	Short-time smoothness spectrum: A novel demodulation method for bearing fault diagnosis. , 2016, , .		0
79	Doppler effect reduction based on microphone arrays for wayside acoustic defective bearing diagnosis. , 2016, , .		0
80	Time–frequency manifold sparse reconstruction: A novel method for bearing fault feature extraction. Mechanical Systems and Signal Processing, 2016, 80, 392-413.	8.0	64
81	Fault diagnosis of motor bearing with speed fluctuation via angular resampling of transient sound signals. Journal of Sound and Vibration, 2016, 385, 16-32.	3.9	77
82	Wavelet Packet Envelope Manifold for Fault Diagnosis of Rolling Element Bearings. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 2515-2526.	4.7	56
83	A Novel Contactless Angular Resampling Method for Motor Bearing Fault Diagnosis Under Variable Speed. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 2538-2550.	4.7	47
84	Time-varying singular value decomposition for periodic transient identification in bearing fault diagnosis. Journal of Sound and Vibration, 2016, 379, 213-231.	3.9	54
85	Enhanced bearing fault diagnosis using adaptive stochastic resonance. , 2016, , .		0
86	Nonstationary weak signal detection based on normalization stochastic resonance with varying parameters. Sadhana - Academy Proceedings in Engineering Sciences, 2016, 41, 621-632.	1.3	8
87	The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system. Journal of Sound and Vibration, 2016, 361, 307-329.	3.9	26
88	Sparse Signal Reconstruction Based on Time–Frequency Manifold for Rolling Element Bearing Fault Signature Enhancement. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 482-491.	4.7	45
89	Assessing the severity of fatigue crack using acoustics modulated by hysteretic vibration for a cantilever beam. Journal of Sound and Vibration, 2016, 370, 306-318.	3.9	4
90	Sparse representation based on local time–frequency template matching for bearing transient fault feature extraction. Journal of Sound and Vibration, 2016, 370, 424-443.	3.9	70

#	Article	IF	CITATIONS
91	Wayside acoustic defective bearing detection based on improved Dopplerlet transform and Doppler transient matching. Applied Acoustics, 2016, 101, 141-155.	3.3	15
92	Multi-bearing defect detection with trackside acoustic signal based on a pseudo time–frequency analysis and Dopplerlet filter. Mechanical Systems and Signal Processing, 2016, 70-71, 176-200.	8.0	26
93	Periodic fault signal enhancement in rotating machine vibrations via stochastic resonance. JVC/Journal of Vibration and Control, 2016, 22, 4227-4246.	2.6	27
94	Multi-scale stochastic resonance spectrogram for rolling element bearing defect diagnosis. , 2016, , .		0
95	Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System. Sensors, 2015, 15, 21075-21098.	3.8	9
96	Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection. Sensors, 2015, 15, 21169-21195.	3.8	35
97	Time-frequency manifold histogram matching for transient signal detection. , 2015, , .		4
98	Adaptive Multiscale Noise Tuning Stochastic Resonance for Health Diagnosis of Rolling Element Bearings. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 564-577.	4.7	98
99	Enhanced Rotating Machine Fault Diagnosis Based on Time-Delayed Feedback Stochastic Resonance. Journal of Vibration and Acoustics, Transactions of the ASME, 2015, 137, .	1.6	62
100	Effects of underdamped step-varying second-order stochastic resonance for weak signal detection. , 2015, 36, 93-103.		115
101	A fusion feature and its improvement based on locality preserving projections for rolling element bearing fault classification. Journal of Sound and Vibration, 2015, 335, 367-383.	3.9	95
102	Multiscale envelope manifold for enhanced fault diagnosis of rotating machines. Mechanical Systems and Signal Processing, 2015, 52-53, 376-392.	8.0	24
103	Wayside Bearing Fault Diagnosis Based on a Data-Driven Doppler Effect Eliminator and Transient Model Analysis. Sensors, 2014, 14, 8096-8125.	3.8	24
104	Stochastic Resonance with a Joint Woods-Saxon and Gaussian Potential for Bearing Fault Diagnosis. Mathematical Problems in Engineering, 2014, 2014, 1-17.	1.1	22
105	Vibration Sensor Data Denoising Using a Time-Frequency Manifold for Machinery Fault Diagnosis. Sensors, 2014, 14, 382-402.	3.8	48
106	Machine Fault Classification Based on Local Discriminant Bases and Locality Preserving Projections. Mathematical Problems in Engineering, 2014, 2014, 1-12.	1.1	14
107	Doppler Shift Removal Based on Instantaneous Frequency Estimation for Wayside Fault Diagnosis of Train Bearings. Journal of Vibration and Acoustics, Transactions of the ASME, 2014, 136, .	1.6	19
108	Out-of-resonance vibration modulation of ultrasound with a nonlinear oscillator for microcrack detection in a cantilever beam. Applied Physics Letters, 2014, 104, .	3.3	6

#	Article	IF	CITATIONS
109	Sequential Multiscale Noise Tuning Stochastic Resonance for Train Bearing Fault Diagnosis in an Embedded System. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 106-116.	4.7	81
110	Discriminant locality preserving projection chart for statistical monitoring of manufacturing processes. International Journal of Production Research, 2014, 52, 5286-5300.	7.5	5
111	Note: On-line weak signal detection via adaptive stochastic resonance. Review of Scientific Instruments, 2014, 85, 066111.	1.3	12
112	Doppler effect reduction based on time-domain interpolation resampling for wayside acoustic defective bearing detector system. Mechanical Systems and Signal Processing, 2014, 46, 253-271.	8.0	37
113	Stochastic resonance with Woods–Saxon potential for rolling element bearing fault diagnosis. Mechanical Systems and Signal Processing, 2014, 45, 488-503.	8.0	102
114	Exchanged ridge demodulation of time-scale manifold for enhanced fault diagnosis of rotating machinery. Journal of Sound and Vibration, 2014, 333, 2450-2464.	3.9	19
115	Doppler Effect removal based on instantaneous frequency estimation and time domain re-sampling for wayside acoustic defective bearing detector system. Measurement: Journal of the International Measurement Confederation, 2014, 50, 346-355.	5.0	28
116	Doppler effect reduction scheme via acceleration-based Dopplerlet transform and resampling method for the wayside acoustic defective bearing detector system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228, 3356-3373.	2.1	13
117	An improved multiscale noise tuning of stochastic resonance for identifying multiple transient faults in rolling element bearings. Journal of Sound and Vibration, 2014, 333, 7401-7421.	3.9	51
118	A new synthetic detection technique for trackside acoustic identification of railroad roller bearing defects. Applied Acoustics, 2014, 85, 69-81.	3.3	24
119	De-noising of wayside acoustic signal from train bearings based on variable digital filtering. Applied Acoustics, 2014, 83, 127-140.	3.3	10
120	Structure damage localization with ultrasonic guided waves based on a time–frequency method. Signal Processing, 2014, 96, 21-28.	3.7	76
121	Time–frequency manifold for nonlinear feature extraction in machinery fault diagnosis. Mechanical Systems and Signal Processing, 2013, 35, 200-218.	8.0	65
122	A Tri-Stable stochastic resonance model and its applying in detection of weak signal. , 2013, , .		2
123	Wayside acoustic diagnosis of defective train bearings based on signal resampling and information enhancement. Journal of Sound and Vibration, 2013, 332, 5635-5649.	3.9	89
124	Vibration signal classification by wavelet packet energy flow manifold learning. Journal of Sound and Vibration, 2013, 332, 1881-1894.	3.9	106
125	Automatic fault diagnosis of rotating machines by time-scale manifold ridge analysis. Mechanical Systems and Signal Processing, 2013, 40, 237-256.	8.0	33
126	Multiscale slope feature extraction for rotating machinery fault diagnosis using wavelet analysis. Measurement: Journal of the International Measurement Confederation, 2013, 46, 497-505	5.0	56

#	Article	IF	CITATIONS
127	A fast and adaptive varying-scale morphological analysis method for rolling element bearing fault diagnosis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227, 1362-1370.	2.1	53
128	Time–frequency manifold correlation matching for periodic fault identification in rotating machines. Journal of Sound and Vibration, 2013, 332, 2611-2626.	3.9	37
129	Note: Signal amplification and filtering with a tristable stochastic resonance cantilever. Review of Scientific Instruments, 2013, 84, 026110.	1.3	40
130	Commutation Sparking Image Monitoring for DC Motor. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2012, 134, .	2.2	5
131	Multiscale noise tuning stochastic resonance enhances weak signal detection in a circuitry system. Measurement Science and Technology, 2012, 23, 115001.	2.6	22
132	Improved regression models for ventilation estimation based on chest and abdomen movements. Physiological Measurement, 2012, 33, 79-93.	2.1	11
133	Phase Space Feature Based on Independent Component Analysis for Machine Health Diagnosis. Journal of Vibration and Acoustics, Transactions of the ASME, 2012, 134, .	1.6	16
134	Rolling Bearing Localized Defect Evaluation by Multiscale Signature via Empirical Mode Decomposition. Journal of Vibration and Acoustics, Transactions of the ASME, 2012, 134, .	1.6	20
135	Time-scale manifold and its ridge analysis for machine fault diagnosis. , 2012, , .		1
136	Time-frequency manifold for demodulation with application to gearbox fault detection. , 2012, , .		3
137	Effects of multiscale noise tuning on stochastic resonance for weak signal detection. , 2012, 22, 614-621.		118
138	Multiscale noise tuning of stochastic resonance for enhanced fault diagnosis in rotating machines. Mechanical Systems and Signal Processing, 2012, 28, 443-457.	8.0	130
139	Time-Frequency Manifold as a Signature for Machine Health Diagnosis. IEEE Transactions on Instrumentation and Measurement, 2012, 61, 1218-1230.	4.7	84
140	An improved bistable circuitry system for weak signal detection. , 2011, , .		0
141	Time-frequency manifold for gear fault signature analysis. , 2011, , .		5
142	Bearing defect diagnosis by stochastic resonance with parameter tuning. , 2011, , .		1
143	Time-frequency vibration representation for steel mill condition monitoring. , 2011, , .		0
144	Machine fault signature analysis by midpoint-based empirical mode decomposition. Measurement Science and Technology, 2011, 22, 015702.	2.6	34

#	Article	IF	CITATIONS
145	Health Status Identification of Connecting Rod Bearing Based on Support Vector Machine. International Federation for Information Processing, 2011, , 206-214.	0.4	0
146	A new method of feature extraction for gearbox vibration signals. , 2010, , .		4
147	An approach for fault diagnosis of bearings using wavelet-based fractal analysis. , 2010, , .		8
148	Wavelet packet base selection for gearbox defect severity classification. , 2010, , .		0
149	Midpoint-based empirical decomposition for nonlinear trend estimation. , 2009, 2009, 2228-31.		0
150	Development of statistical regression models for ventilation estimation. , 2009, 2009, 1266-9.		5
151	MECHANICAL WATCH SIGNATURE ANALYSIS BASED ON WAVELET DECOMPOSITION. International Journal of Wavelets, Multiresolution and Information Processing, 2009, 07, 491-512.	1.3	2
152	Machine condition monitoring using principal component representations. Mechanical Systems and Signal Processing, 2009, 23, 446-466.	8.0	83
153	Separating mixed multi-component signal with an application in mechanical watch movement. , 2008, 18, 1013-1028.		23
154	Empirical mode decomposition applied to tissue artifact removal from respiratory signal. , 2008, 2008, 3624-7.		11
155	ICA Based Feature Extraction from One-Dimensional Signal for Machine Condition Monitoring. , 2008, ,		2
156	Subspace-based gearbox condition monitoring by kernel principal component analysis. Mechanical Systems and Signal Processing, 2007, 21, 1755-1772.	8.0	121
157	Detection of signal transients using independent component analysis and its application in gearbox condition monitoring. Mechanical Systems and Signal Processing, 2007, 21, 2056-2071.	8.0	52