Jing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6790096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	REV-ERBα regulates age-related and oxidative stress-induced degeneration in retinal pigment epithelium via NRF2. Redox Biology, 2022, 51, 102261.	9.0	12
2	Wnt Signaling in Inner Blood–Retinal Barrier Maintenance. International Journal of Molecular Sciences, 2021, 22, 11877.	4.1	16
3	Loss of RAR-related orphan receptor alpha (RORα) selectively lowers docosahexaenoic acid in developing cerebellum. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 152, 102036.	2.2	4
4	Stress Signal Regulation by Na/K-ATPase As a New Approach to Promote Physiological Revascularization in a Mouse Model of Ischemic Retinopathy. , 2020, 61, 9.		6
5	Wnt signaling activates MFSD2A to suppress vascular endothelial transcytosis and maintain blood-retinal barrier. Science Advances, 2020, 6, eaba7457.	10.3	51
6	MicroRNAs in Vascular Eye Diseases. International Journal of Molecular Sciences, 2020, 21, 649.	4.1	34
7	Assessment and Characterization of Hyaloid Vessels in Mice. Journal of Visualized Experiments, 2019, , .	0.3	11
8	MicroRNA-145 Regulates Pathological Retinal Angiogenesis by Suppression of TMOD3. Molecular Therapy - Nucleic Acids, 2019, 16, 335-347.	5.1	24
9	Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nature Communications, 2019, 10, 804.	12.8	67
10	Wnt Signaling in vascular eye diseases. Progress in Retinal and Eye Research, 2019, 70, 110-133.	15.5	130
11	Inflammatory signals from photoreceptor modulate pathological retinal angiogenesis via c-Fos. Journal of Experimental Medicine, 2017, 214, 1753-1767.	8.5	60
12	RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis. FASEB Journal, 2017, 31, 4492-4502.	0.5	18
13	Animal models of ocular angiogenesis: from development to pathologies. FASEB Journal, 2017, 31, 4665-4681.	0.5	119
14	Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H738-H749.	3.2	113
15	Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy. American Journal of Pathology, 2016, 186, 2588-2600.	3.8	30
16	Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathy. Scientific Reports, 2016, 6, 33947.	3.3	29
17	Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nature Medicine, 2016, 22, 439-445.	30.7	183
18	Retinal Vascular Development. Essentials in Ophthalmology, 2016, , 1-19.	0.1	4

JING CHEN

#	Article	IF	CITATIONS
19	Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice. PLoS ONE, 2015, 10, e0132643.	2.5	76
20	Nanoparticle-Mediated Expression of a Wnt Pathway Inhibitor Ameliorates Ocular Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 855-864.	2.4	32
21	SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Science Signaling, 2015, 8, ra94.	3.6	38
22	Nuclear receptor RORα regulates pathologic retinal angiogenesis by modulating SOCS3-dependent inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10401-10406.	7.1	55
23	Endothelial <i>microRNA-150</i> is an intrinsic suppressor of pathologic ocular neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12163-12168.	7.1	83
24	Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis. Investigative Ophthalmology and Visual Science, 2014, 55, 8267-8277.	3.3	39
25	Enhancing Reliability of the Laser-Induced Choroidal Neovascularization Mouse Model: Insights From a New Study. , 2014, 55, 6535.		2
26	Sirtuin1 Over-Expression Does Not Impact Retinal Vascular and Neuronal Degeneration in a Mouse Model of Oxygen-Induced Retinopathy. PLoS ONE, 2014, 9, e85031.	2.5	18
27	Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. Angiogenesis, 2013, 16, 985-992.	7.2	30
28	Choroid Sprouting Assay: An Ex Vivo Model of Microvascular Angiogenesis. PLoS ONE, 2013, 8, e69552.	2.5	88
29	SOCS3 is an endogenous inhibitor of pathologic angiogenesis. Blood, 2012, 120, 2925-2929.	1.4	59
30	Retinal Expression of Wnt-Pathway Mediated Genes in Low-Density Lipoprotein Receptor-Related Protein 5 (Lrp5) Knockout Mice. PLoS ONE, 2012, 7, e30203.	2.5	56
31	Resveratrol Inhibits Pathologic Retinal Neovascularization in <i>Vldlr</i> ^{â^'/â^'} <i>Mice</i> . , 2011, 52, 2809.		76
32	Current update on retinopathy of prematurity: screening and treatment. Current Opinion in Pediatrics, 2011, 23, 173-178.	2.0	149
33	Wnt Signaling Mediates Pathological Vascular Growth in Proliferative Retinopathy. Circulation, 2011, 124, 1871-1881.	1.6	108
34	5-Lipoxygenase Metabolite 4-HDHA Is a Mediator of the Antiangiogenic Effect of ω-3 Polyunsaturated Fatty Acids. Science Translational Medicine, 2011, 3, 69ra12.	12.4	201
35	SIRT1 Is Essential for Normal Cognitive Function and Synaptic Plasticity. Journal of Neuroscience, 2010, 30, 9695-9707.	3.6	452
36	Postnatal Weight Gain Modifies Severity and Functional Outcome of Oxygen-Induced Proliferative Retinopathy. American Journal of Pathology, 2010, 177, 2715-2723.	3.8	84

JING CHEN

#	Article	IF	CITATIONS
37	The Mouse Retina as an Angiogenesis Model. , 2010, 51, 2813.		523
38	Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nature Protocols, 2009, 4, 1565-1573.	12.0	561
39	Suppression of Retinal Neovascularization by Erythropoietin siRNA in a Mouse Model of Proliferative Retinopathy. , 2009, 50, 1329.		168
40	Erythropoietin deficiency decreases vascular stability in mice. Journal of Clinical Investigation, 2008, 118, 526-33.	8.2	242
41	Light-induced translocation of cyclic-GMP phosphodiesterase on rod disc membranes in rat retina. Molecular Vision, 2008, 14, 2509-17.	1.1	8
42	Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Medicine, 2007, 13, 868-873.	30.7	633
43	Retinopathy of prematurity. Angiogenesis, 2007, 10, 133-140.	7.2	535