Ashlee J Howarth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6788486/publications.pdf

Version: 2024-02-01

59 papers 8,447 citations

35 h-index

109321

58 g-index

70 all docs

70 docs citations

70 times ranked

9378 citing authors

#	Article	IF	CITATIONS
1	Modulating Photo- and Radioluminescence in Tb(III) Cluster-Based Metal–Organic Frameworks. , 2022, 4, 1025-1031.		19
2	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	18.8	140
3	Synthetic approaches for accessing rare-earth analogues of UiO-66. Chemical Communications, 2021, 57, 6121-6124.	4.1	18
4	Ammonia Capture within Zirconium Metal–Organic Frameworks: Reversible and Irreversible Uptake. ACS Applied Materials & Interfaces, 2021, 13, 20081-20093.	8.0	36
5	Building a shp : A Rare-Earth Metal–Organic Framework and Its Application in a Catalytic Photooxidation Reaction. Chemistry of Materials, 2021, 33, 4163-4169.	6.7	39
6	Remodelling a shp: Transmetalation in a Rare-Earth Cluster-Based Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 11795-11802.	4.0	8
7	Simplifying and expanding the scope of boron imidazolate framework (BIF) synthesis using mechanochemistry. Chemical Science, 2021, 12, 14499-14506.	7.4	7
8	Metal–organic frameworks for the generation of reactive oxygen species. Chemical Physics Reviews, 2021, 2, .	5.7	7
9	A Step toward Change: A Green Alternative for the Synthesis of Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16356-16362.	6.7	7
10	Rare-earth metal–organic frameworks: from structure to applications. Chemical Society Reviews, 2020, 49, 7949-7977.	38.1	244
11	Crystalline Molecular Materials: From Structure to Function. Crystal Growth and Design, 2020, 20, 7565-7567.	3.0	1
12	Efficient activation of peroxymonosulfate by composites containing iron mining waste and graphitic carbon nitride for the degradation of acetaminophen. Journal of Hazardous Materials, 2020, 400, 123310.	12.4	35
13	Simple, scalable mechanosynthesis of metal–organic frameworks using liquid-assisted resonant acoustic mixing (LA-RAM). Chemical Science, 2020, 11, 7578-7584.	7.4	55
14	Modular Construction of Porous Hydrogenâ€Bonded Molecular Materials from Melams. Chemistry - A European Journal, 2020, 26, 7026-7040.	3.3	14
15	Rational Synthesis of Mixed-Metal Microporous Metal–Organic Frameworks with Controlled Composition Using Mechanochemistry. Chemistry of Materials, 2019, 31, 5494-5501.	6.7	96
16	Metal-organic frameworks for capture and detoxification of nerve agents. , 2019, , 179-202.		3
17	Detoxification of a Mustard-Gas Simulant by Nanosized Porphyrin-Based Metal–Organic Frameworks. ACS Applied Nano Materials, 2019, 2, 465-469.	5.0	32
18	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie - International Edition, 2018, 57, 1949-1953.	13.8	121

#	Article	IF	CITATIONS
19	Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angewandte Chemie, 2018, 130, 1967-1971.	2.0	24
20	Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 2018, 358, 92-107.	18.8	719
21	Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organic Framework and Examination of Anion Binding Motifs. Chemistry of Materials, 2018, 30, 1277-1284.	6.7	125
22	Supercritical Carbon Dioxide Enables Rapid, Clean, and Scalable Conversion of a Metal Oxide into Zeolitic Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 3222-3228.	3.0	36
23	Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11, 1850-1860.	10.4	72
24	Bottom-Up Design and Generation of Complex Structures: A New Twist in Reticular Chemistry. Crystal Growth and Design, 2018, 18, 449-455.	3.0	14
25	Benign by Design: Green and Scalable Synthesis of Zirconium UiO-Metal–Organic Frameworks by Water-Assisted Mechanochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15841-15849.	6.7	120
26	Phosphonates Meet Metalâ^'Organic Frameworks: Towards CO 2 Adsorption. Israel Journal of Chemistry, 2018, 58, 1164-1170.	2.3	4
27	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal–organic frameworks. Chemical Communications, 2018, 54, 6999-7002.	4.1	63
28	Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal–organic framework. Polyhedron, 2018, 151, 338-343.	2.2	43
29	Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs. CrystEngComm, 2018, 20, 6140-6145.	2.6	33
30	Green applications of metal–organic frameworks. CrystEngComm, 2018, 20, 5899-5912.	2.6	54
31	Improving the Efficiency of Mustard Gas Simulant Detoxification by Tuning the Singlet Oxygen Quantum Yield in Metal–Organic Frameworks and Their Corresponding Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 23802-23806.	8.0	67
32	Towards hydroxamic acid linked zirconium metal–organic frameworks. Materials Chemistry Frontiers, 2017, 1, 1194-1199.	5.9	29
33	Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm, 2017, 19, 4082-4091.	2.6	235
34	Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Accounts of Chemical Research, 2017, 50, 805-813.	15.6	644
35	Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science, 2017, 356, 624-627.	12.6	286
36	Precision in 3D. Nature Chemistry, 2017, 9, 299-301.	13.6	1

#	Article	IF	CITATIONS
37	Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chemical Society Reviews, 2017, 46, 3357-3385.	38.1	707
38	Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 2017, 7, 997-1014.	11.2	288
39	Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 24555-24560.	8.0	112
40	Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coordination Chemistry Reviews, 2017, 346, 101-111.	18.8	275
41	Postsynthetic Incorporation of a Singlet Oxygen Photosensitizer in a Metal–Organic Framework for Fast and Selective Oxidative Detoxification of Sulfur Mustard. Chemistry - A European Journal, 2017, 23, 214-218.	3.3	98
42	Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks. Chemistry of Materials, 2017, 29, 26-39.	6.7	518
43	Experimentalists and theorists need to talk. Nature, 2017, 551, 433-434.	27.8	6
44	Adding to the Arsenal of Zirconium-Based Metal-Organic Frameworks:theTopology as a Platform for Solvent-Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4266-4266.	2.0	1
45	Detoxification of Chemical Warfare Agents Using a Zr ₆ â€Based Metal–Organic Framework/Polymer Mixture. Chemistry - A European Journal, 2016, 22, 14864-14868.	3.3	93
46	Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal–organic framework. Journal of Materials Chemistry A, 2016, 4, 13809-13813.	10.3	147
47	Adding to the Arsenal of Zirconiumâ€Based Metal–Organic Frameworks: <i>the</i> Topology as a Platform for Solventâ€Assisted Metal Incorporation. European Journal of Inorganic Chemistry, 2016, 2016, 4349-4352.	2.0	59
48	Combining solvent-assisted linker exchange and transmetallation strategies to obtain a new non-catenated nickel (II) pillared-paddlewheel MOF. Inorganic Chemistry Communication, 2016, 67, 60-63.	3.9	13
49	A visually detectable pH responsive zirconium metal–organic framework. Chemical Communications, 2016, 52, 3438-3441.	4.1	57
50	Efficient extraction of sulfate from water using a Zr-metal–organic framework. Dalton Transactions, 2016, 45, 93-97.	3.3	56
51	Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 2016, 1, .	48.7	1,490
52	High volumetric uptake of ammonia using Cu-MOF-74/Cu-CPO-27. Dalton Transactions, 2016, 45, 4150-4153.	3.3	102
53	Selective Photooxidation of a Mustardâ€Gas Simulant Catalyzed by a Porphyrinic Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 9001-9005.	13.8	244
54	High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 7488-7494.	13.7	330

#	Article	IF	CITATIONS
55	A Hafnium-Based Metal–Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. Journal of the American Chemical Society, 2015, 137, 13624-13631.	13.7	137
56	Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm, 2015, 17, 7245-7253.	2.6	133
57	Elucidating the Origin of Enhanced Phosphorescence Emission in the Solid State (EPESS) in Cyclometallated Iridium Complexes. European Journal of Inorganic Chemistry, 2014, 2014, 3657-3664.	2.0	27
58	Tuning the Emission Lifetime in Bis-cyclometalated Iridium(III) Complexes Bearing Iminopyrene Ligands. Inorganic Chemistry, 2014, 53, 11882-11889.	4.0	34
59	Valuing Humanity As Much As Research Output And Ideas. ChemistryViews, 0, , .	0.0	0