Samuel Seoane Ruzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6787398/publications.pdf

Version: 2024-02-01

430874 395702 1,174 34 18 33 citations g-index h-index papers 35 35 35 2133 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hepatic p63 regulates glucose metabolism by repressing SIRT1. Gut, 2023, 72, 472-483.	12.1	4
2	POU1F1 transcription factor induces metabolic reprogramming and breast cancer progression via LDHA regulation. Oncogene, 2021, 40, 2725-2740.	5.9	32
3	O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nature Communications, 2021, 12, 5068.	12.8	36
4	POU1F1 transcription factor promotes breast cancer metastasis via recruitment and polarization of macrophages. Journal of Pathology, 2019, 249, 381-394.	4. 5	26
5	Corneal regeneration by conditioned medium of human uterine cervical stem cells is mediated by TIMP-1 and TIMP-2. Experimental Eye Research, 2019, 180, 110-121.	2.6	25
6	Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis. Oncogene, 2018, 37, 1430-1444.	5.9	58
7	Aromatic-Based Design of Highly Active and Noncalcemic Vitamin D Receptor Agonists. Journal of Medicinal Chemistry, 2018, 61, 4928-4937.	6.4	18
8	Regulation of the prometastatic neuregulin– <scp>MMP</scp> 13 axis by <scp>SRC</scp> family kinases: therapeutic implications. Molecular Oncology, 2017, 11, 1788-1805.	4.6	7
9	Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Experimental Eye Research, 2016, 149, 84-92.	2.6	67
10	Breast cancer dissemination promoted by a neuregulin-collagenase 3 signalling node. Oncogene, 2016, 35, 2756-2765.	5.9	18
11	Carborane-based design of a potent vitamin D receptor agonist. Chemical Science, 2016, 7, 1033-1037.	7.4	43
12	Biological evaluation of new vitamin D2 analogues. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 66-71.	2.5	12
13	Multisite phosphorylation of P-Rex1 by protein kinase C. Oncotarget, 2016, 7, 77937-77949.	1.8	7
14	Synthesis and Biological Activity of Two C-7 Methyl Analogues of Vitamin D. Journal of Organic Chemistry, 2015, 80, 165-173.	3.2	14
15	Pit-1 inhibits BRCA1 and sensitizes human breast tumors to cisplatin and vitamin D treatment. Oncotarget, 2015, 6, 14456-14471.	1.8	12
16	Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget, 2014, 5, 10692-10708.	1.8	75
17	26,26,26,27,27,27-Hexadeuterated-1,25-Dihydroxyvitamin D3 (1,25D-d6) As Adjuvant of Chemotherapy in Breast Cancer Cell Lines. Cancers, 2014, 6, 67-78.	3.7	O
18	Cancer progression by breast tumors with Pit-1-overexpression is blocked by inhibition of metalloproteinase (MMP)-13. Breast Cancer Research, 2014, 16, 505.	5.0	15

#	Article	IF	CITATIONS
19	Synthesis of nonadeuterated $1\hat{l}_{\pm}$,25-dihydroxyvitamin D2. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 204-206.	2.5	1
20	Active kinase profiling, genetic and pharmacological data define mTOR as an important common target in triple-negative breast cancer. Oncogene, 2014, 33, 148-156.	5.9	78
21	Phosphorylation of P-Rex1 at serine 1169 participates in IGF-1R signaling in breast cancer cells. Cellular Signalling, 2013, 25, 2281-2289.	3.6	16
22	Administration of the optimized β-Lapachone–poloxamer–cyclodextrin ternary system induces apoptosis, DNA damage and reduces tumor growth in a human breast adenocarcinoma xenograft mouse model. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 497-504.	4.3	14
23	Synthesis and Biological Evaluation of $1\hat{l}\pm,25$ -Dihydroxyvitamin D ₃ Analogues with a Long Side Chain at C12 and Short C17 Side Chains. Journal of Medicinal Chemistry, 2012, 55, 8642-8656.	6.4	18
24	P-Rex1 participates in Neuregulin-ErbB signal transduction and its expression correlates with patient outcome in breast cancer. Oncogene, 2011, 30, 1059-1071.	5.9	92
25	Synthesis, Structure, and Biological Activity of desâ€Side Chain Analogues of 1α,25â€Dihydroxyvitaminâ€D ₃ with Substituents at C18. ChemMedChem, 2011, 6, 788-793.	3.2	12
26	Inhibition of Src Family Kinases and Receptor Tyrosine Kinases by Dasatinib: Possible Combinations in Solid Tumors. Clinical Cancer Research, 2011, 17, 5546-5552.	7.0	247
27	Effect of Multikinase Inhibitors on Caspase-Independent Cell Death and DNA Damage in HER2-Overexpressing Breast Cancer Cells. Journal of the National Cancer Institute, 2010, 102, 1432-1446.	6.3	43
28	The Pit-1/Poulf1 transcription factor regulates and correlates with prolactin expression in human breast cell lines and tumors. Endocrine-Related Cancer, 2010, 17, 73-85.	3.1	16
29	Deregulation of the Pit-1 transcription factor in human breast cancer cells promotes tumor growth and metastasis. Journal of Clinical Investigation, 2010, 120, 4289-4302.	8.2	43
30	Cellular Expression Levels of the Vitamin D Receptor Are Critical to Its Transcriptional Regulation by the Pituitary Transcription Factor Pit-1. Molecular Endocrinology, 2007, 21, 1513-1525.	3.7	13
31	Vitamin D, Pit-1, GH, and PRL: Possible Roles in Breast Cancer Development. Current Medicinal Chemistry, 2007, 14, 3051-3058.	2.4	10
32	The Vitamin D Receptor Represses Transcription of the Pituitary Transcription Factor Pit-1 Gene without Involvement of the Retinoid X Receptor. Molecular Endocrinology, 2006, 20, 735-748.	3.7	27
33	Pit-1 is expressed in normal and tumorous human breast and regulates GH secretion and cell proliferation. European Journal of Endocrinology, 2005, 153, 335-344.	3.7	46
34	Localization of a Negative Vitamin D Response Sequence in the Human Growth Hormone Gene. Biochemical and Biophysical Research Communications, 2002, 292, 250-255.	2.1	29