
Nobuaki Kitazawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6787319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. Journal of Materials Science, 2002, 37, 3585-3587.	3.7	262
2	Excitons in two-dimensional layered perovskite compounds: (C6H5C2H4NH3)2Pb(Br,I)4 and (C6H5C2H4NH3)2Pb(Cl,Br)4. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 49, 233-238.	3.5	90
3	Excitons in organic–inorganic hybrid compounds (CnH2n+1NH3)2PbBr4 (n=4, 5, 7 and 12). Thin Solid Films, 2010, 518, 3199-3203.	1.8	69
4	Temperature-dependent time-resolved photoluminescence of (C6H5C2H4NH3)2PbX4 (X=Br and I). Materials Chemistry and Physics, 2012, 134, 875-880.	4.0	66
5	Optical properties of natural quantum-well compounds (C6H5-CnH2n-NH3)2PbBr4 (n=1–4). Journal of Physics and Chemistry of Solids, 2010, 71, 797-802.	4.0	62
6	Synthesis and luminescence properties of lead-halide based organic–inorganic layered perovskite compounds (CnH2n+1NH3)2PbI4 (n=4, 5, 7, 8 and 9). Journal of Physics and Chemistry of Solids, 2011, 72, 1467-1471.	4.0	50
7	Optical Absorption and Photoluminescence Properties of Pb(I, Br)-Based Two-Dimensional Layered Perovskite. Japanese Journal of Applied Physics, 1997, 36, 2272-2276.	1.5	37
8	Compositional Modulation of Two-Dimensional Layered Perovskite(RNH3)2Pb(Cl,Br,I)4and Its Optical Properties. Japanese Journal of Applied Physics, 1996, 35, 6202-6207.	1.5	23
9	Photoconductivity study of amorphous carbon nitride films for opto-electronics devices. Diamond and Related Materials, 2011, 20, 1208-1211.	3.9	23
10	Optical properties of (C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ PbI _{4-x<!--</td--><td>subงฆิr<รเ</td><td>ıb≫xk/sub>(x)</td>}	subงฆิr<รเ	ıb≫xk/sub>(x)
11	Sol–gel derived mesoporous silica films using amphiphilic triblock copolymers. Journal of Non-Crystalline Solids, 2003, 332, 199-206.	3.1	19
12	Mechanical properties of aerogel-like thin films used for MEMS. Journal of Micromechanics and Microengineering, 2004, 14, 681-686.	2.6	18
13	Growth of vertically aligned one-dimensional ZnO nanowire arrays on sol–gel derived ZnO thin films. Journal of Physics and Chemistry of Solids, 2014, 75, 1194-1200.	4.0	16
14	Reversible photo-induced deformation of amorphous carbon nitride thin films. Diamond and Related Materials, 2014, 41, 20-24.	3.9	16
15	Excitons in self-organized layered perovskite films prepared by the two-step growth process. Thin Solid Films, 2006, 500, 133-137.	1.8	15
16	XPS study of carbon nitride films deposited by hot filament chemical vapor deposition using carbon filament. Thin Solid Films, 2008, 516, 648-651.	1.8	15
17	Optical properties of organic–inorganic hybrid films prepared by the two-step growth process. Journal of Luminescence, 2009, 129, 1036-1041.	3.1	15

18 Growth of polycrystalline silicon thin films on glass. Thin Solid Films, 1997, 296, 2-6. 1.8 13

Nobuaki Kitazawa

#	Article	IF	CITATIONS
19	Mechanical properties and residual stress in AIN films prepared by ion beam assisted deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1567-1570.	2.1	13
20	Stability of (C6H5C2H4NH3)2Pb(Brxl4-x)Mixed Crystals. Japanese Journal of Applied Physics, 1997, 36, 6876-6879.	1.5	11
21	Thin films of microcrystalline (CH3NH3)(C6H5C2H4NH3)2Pb2Br7 and related compounds: fabrication and optical properties. Synthetic Metals, 1998, 96, 133-136.	3.9	11
22	DC electrical conductivity study of amorphous carbon nitride films prepared by reactive RF magnetron sputtering. Japanese Journal of Applied Physics, 2014, 53, 02BC03.	1.5	11
23	Correlation of photothermal conversion on the photo-induced deformation of amorphous carbon nitride films prepared by reactive sputtering. Applied Physics Letters, 2014, 105, .	3.3	11
24	Fabrication of Graded Band Gap Amorphous Carbon Nitride Thin Films for New Generation Photovoltaic Applications. Japanese Journal of Applied Physics, 2012, 51, 10NE26.	1.5	9
25	Preparation and stability of nanocrystalline (C6H5C2H4NH3)2PbI4-doped PMMA films. Journal of Materials Science, 2002, 37, 4845-4848.	3.7	8
26	Optical properties of self-assembled nano-hybrid materials. Surface and Coatings Technology, 2005, 198, 9-13.	4.8	8
27	Effects of post-deposition chemical treatment on the formation of mesoporous titania films. Journal of Materials Science, 2007, 42, 5074-5079.	3.7	8
28	Thermal annealing of a-Si/Au superlattice thin films. Journal of Non-Crystalline Solids, 2012, 358, 2150-2153.	3.1	7
29	Effect ofNa2OAddition toAg2O-Doped Phosphate Glasses on Enhancement of Silver Particle Precipitation by Low-Energy Ion Irradiation. Japanese Journal of Applied Physics, 1996, 35, 2228-2233.	1.5	6
30	Synthesis of mesostructured titanium dioxide films by surfactant-templated sol-gel method. Journal of Materials Science, 2003, 38, 3069-3072.	3.7	6
31	Preparation of amorphous carbon nitride films from toluene and nitrogen by rf-PECVD. Materials Science and Technology, 2004, 20, 1119-1122.	1.6	6
32	Columnar structured amorphous carbon nitride films. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 797-800.	0.8	6
33	Electrical resistivity response of amorphous carbon nitride thin films in various gas atmospheres. Japanese Journal of Applied Physics, 2015, 54, 041401.	1.5	6
34	Effect of substrate temperatures on amorphous carbon nitride films prepared by reactive sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 966-969.	2.1	5
35	Optical properties of dye-doped deoxyribonucleic acid films. Journal of Materials Science, 2009, 44, 4999-5003.	3.7	5
36	Response to visible light in amorphous carbon nitride films prepared by reactive sputtering. Japanese Journal of Applied Physics, 2016, 55, 01AA03.	1.5	5

Nobuaki Kitazawa

#	Article	IF	CITATIONS
37	Influence of Chemical Bonding States on Electrical Properties of Amorphous Carbon Nitride Films. Japanese Journal of Applied Physics, 2012, 51, 121401.	1.5	5
38	Precipitation of Silver Particles in Glasses by Ion Irradiation. Japanese Journal of Applied Physics, 1994, 33, L1245-L1247.	1.5	4
39	Stability of Self-Assembled Organic-Inorganic Layered Perovskite. Materials Research Society Symposia Proceedings, 1999, 576, 165.	0.1	4
40	Synthesis and characterization of C–N films by hot carbon filament CVD. Surface and Coatings Technology, 1999, 120-121, 418-422.	4.8	4
41	Surfactant modified deoxyribonucleic acid films: synthesis, interaction with acridine orange and luminescent properties. Journal of Materials Science, 2011, 46, 2036-2040.	3.7	4
42	Fabrication of Graded Band Gap Amorphous Carbon Nitride Thin Films for New Generation Photovoltaic Applications. Japanese Journal of Applied Physics, 2012, 51, 10NE26.	1.5	4
43	Influence of Chemical Bonding States on Electrical Properties of Amorphous Carbon Nitride Films. Japanese Journal of Applied Physics, 2012, 51, 121401.	1.5	4
44	Photomechanical Response of Amorphous Carbon Nitride Thin Films on SiO ₂ Substrate. E-Journal of Surface Science and Nanotechnology, 2015, 13, 352-356.	0.4	4
45	Effect of oxygen plasma treatment on bonding states for columnar structured a-CN thin films prepared by reactive sputtering. Thin Solid Films, 2009, 518, 1512-1516.	1.8	3
46	Contribution of nitrogen to the photoinduced deformation of amorphous carbon nitride films. Japanese Journal of Applied Physics, 2016, 55, 01AA01.	1.5	3
47	Growth and photo-electrochemical properties of rutile TiO2 nanowire arrays prepared by the hydrothermal method. International Journal of Materials Research, 2019, 110, 268-274.	0.3	3
48	Change in Surface States of Amorphous Carbon Nitride Films after Exposure to Oxygen Plasma. Materials Science Forum, 2010, 638-642, 818-823.	0.3	2
49	Preparation of mesoporous oxide films via block copolymer templating. Journal of Non-Crystalline Solids, 2010, 356, 109-113.	3.1	2
50	Non-uniform Excitation States in Photoinduced Deformation of Amorphous Carbon Nitride Films. Scientific Reports, 2018, 8, 15066.	3.3	2
51	Preparation of Mesoporous Oxides for Mems Structures. Materials Research Society Symposia Proceedings, 2000, 657, 731.	0.1	1
52	Effects of argon addition on a-CNx film deposition by hot carbon filament chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1242-1246.	2.1	1
53	Effects of Substrate Materials on Nanoindentation Tests of AlN Thin Films. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	1
54	Effects of graphite content on carbon nitride films prepared by hot carbon filament chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1386-1388.	2.1	1

Νοβυακι Κιταζαψα

#	Article	IF	CITATIONS
55	Surface Nitridation of Amorphous Carbon by Nitrogen Ion Beam Irradiation. Materials Research Society Symposia Proceedings, 2004, 843, 311.	0.1	1
56	Metal induced crystallization of amorphous silicon using layer-by-layer technique with gold ultra thin layer. , 2010, , .		1
57	Synthesis and luminescence properties of dye-doped deoxyribonucleic acid films. Journal of Luminescence, 2012, 132, 1432-1436.	3.1	1
58	Effects of thermal history on the electrical properties of amorphous carbon nitride films prepared by reactive sputtering. Japanese Journal of Applied Physics, 2014, 53, 11RA09.	1.5	1
59	Long-term irradiation effects of visible light on amorphous carbon nitride films. Diamond and Related Materials, 2016, 63, 132-135.	3.9	1
60	Mechanical Properties of AlN Thin Films Prepared by Ion Beam Assisted Deposition. Materials Research Society Symposia Proceedings, 2000, 647, 1.	0.1	0
61	Effect of Microstructure on Microhardness of AlN Thin Films. Materials Research Society Symposia Proceedings, 2001, 695, 1.	0.1	0
62	Effects of Irradiation by Low Energy Nitrogen Ions on Carbon Nitride Thin Films. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	0
63	Irradiation Effect of Nitrogen Ion Beam on Carbon Nitride Thin Films. Materials Research Society Symposia Proceedings, 2003, 792, 298.	0.1	0
64	Irradiation effect of nitrogen ion beam on hydrogenated amorphous carbon films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1489-1493.	2.1	0
65	Photoinduced deformation of a-C thin films prepared by RF magnetron sputtering. Diamond and Related Materials, 2020, 108, 107844.	3.9	0

66 Optical Properties of the Natural Quantum-Well System (C6H5C2H4NH3)2(CH3NH3)m-1PbmX3m+1 (X;) Tj ETQq0 0 0 rgBT Overlock