
Claus Moseke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6784041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication, 2015, 7, 035002.	7.1	296
2	Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication, 2014, 6, 015006.	7.1	180
3	Determination of the Bone Mineral Crystallite Size and Lattice Strain from Diffraction Line Broadening. Crystal Research and Technology, 2002, 37, 1234-1240.	1.3	165
4	Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia, 2010, 6, 3815-3823.	8.3	149
5	Reaction kinetics of dual setting α-tricalcium phosphate cements. Journal of Materials Science: Materials in Medicine, 2016, 27, 1.	3.6	113
6	Injectability and mechanical properties of magnesium phosphate cements. Journal of Materials Science: Materials in Medicine, 2011, 22, 2591-2598.	3.6	77
7	Strontium modified biocements with zero order release kinetics. Biomaterials, 2008, 29, 4691-4697.	11.4	76
8	TiO2 nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents. Applied Surface Science, 2012, 258, 5399-5404.	6.1	73
9	3D printing of ceramic implants. MRS Bulletin, 2015, 40, 127-136.	3.5	72
10	The effect of Cu(II)â€loaded brushite scaffolds on growth and activity of osteoblastic cells. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2392-2400.	4.0	71
11	Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication, 2015, 7, 015004.	7.1	56
12	Collagen–hydroxyapatite–water interactions investigated by XRD, piezogravimetry, infrared and Raman spectroscopy. Journal of Molecular Structure, 2004, 704, 53-58.	3.6	50
13	Cu2+, Co2+ and Cr3+ doping of a calcium phosphate cement influences materials properties and response of human mesenchymal stromal cells. Materials Science and Engineering C, 2017, 73, 99-110.	7.3	41
14	Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. Materials Science and Engineering C, 2019, 98, 1145-1158.	7.3	36
15	Hydraulic setting Mg ₃ (PO ₄) ₂ powders for 3D printing technology. Advances in Applied Ceramics, 2011, 110, 476-481.	1.1	32
16	Hard implant coatings with antimicrobial properties. Journal of Materials Science: Materials in Medicine, 2011, 22, 2711-2720.	3.6	31
17	X-ray diffraction studies of bone apatite under acid demineralization. Crystal Research and Technology, 2004, 39, 71-77.	1.3	25
18	Chemical characterization of hydroxyapatite obtained by wet chemistry in the presence of V, Co, and Cu ions. Materials Science and Engineering C, 2013, 33, 1654-1661.	7.3	17

CLAUS MOSEKE

#	Article	IF	CITATIONS
19	Electrochemically Deposited Ca(OH) ₂ Coatings as a Bactericidal and Osteointegrative Modification of Ti Implants. Advanced Engineering Materials, 2009, 11, B1.	3.5	16
20	Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces. Materials Science and Engineering C, 2016, 67, 65-71.	7.3	15
21	Multifunctional calcium phosphate based coatings on titanium implants with integrated trace elements. Biomedical Materials (Bristol), 2020, 15, 025006.	3.3	14
22	Oxygen diffusion hardening of tantalum coatings on cp-titanium for biomedical applications. Surface and Coatings Technology, 2013, 216, 46-51.	4.8	13
23	Cell and protein adsorption studies using . quartz crystal microgravimetry with dissipation monitoring. Materialwissenschaft Und Werkstofftechnik, 2009, 40, 36-42.	0.9	9
24	Low temperature fabrication of spherical brushite granules by cement paste emulsion. Journal of Materials Science: Materials in Medicine, 2012, 23, 2631-2637.	3.6	9
25	Silver and copper addition enhances the antimicrobial activity of calcium hydroxide coatings on titanium. Journal of Materials Science: Materials in Medicine, 2018, 29, 61.	3.6	8
26	Nanotopographical Coatings Induce an Early Phenotype-Specific Response of Primary Material-Resident M1 and M2 Macrophages. Materials, 2020, 13, 1142.	2.9	8
27	Real-time measurement of protein adsorption on electrophoretically deposited hydroxyapatite coatings and magnetron sputtered metallic films using the surface acoustic wave technique. Materials Science and Engineering C, 2016, 61, 351-354.	7.3	7
28	Nanostructuring of Refractory Metal Surfaces by Electrochemical Oxidation: Nb and the Binary Systems Ti-Ta and Nb-Ta. Current Nanoscience, 2013, 9, 132-138.	1.2	6
29	Plasma-Assisted Hydrophilization of Cochlear Implant Electrode Array Surfaces Enables Adhesion of Neurotrophin-Secreting Cells. Orl, 2014, 76, 257-265.	1.1	5
30	Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets. Materials Science and Engineering C, 2014, 44, 126-131.	7.3	4
31	Electrophoretic deposition of zinc-doped hydroxyapatite coatings on titanium: deposition kinetics and coating morphology. International Journal of Surface Science and Engineering, 2019, 13, 201.	0.4	4
32	Osteoclast and osteoblast response to strontium-doped struvite coatings on titanium for improved bone integration. Biomedizinische Technik, 2020, 65, 631-641.	0.8	1
33	Emulsion synthesis of dicalcium phosphate particles for the preparation of calcium phosphate cements with improved compressive strengths and reduced setting times. BioNanoMaterials, 2013, 14, .	1.4	0
34	Nanostructuring of Refractory Metal Surfaces by Electrochemical Oxidation: Nb and the Binary Systems Ti-Ta and Nb-Ta. Current Nanoscience, 2013, 9, 132-138.	1.2	0