
Nigel Mackman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6783943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LPS induction of gene expression in human monocytes. Cellular Signalling, 2001, 13, 85-94.	1.7	2,101
2	Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. Journal of Experimental Medicine, 2012, 209, 819-835.	4.2	1,441
3	Triggers, targets and treatments for thrombosis. Nature, 2008, 451, 914-918.	13.7	932
4	Methodological Guidelines to Study Extracellular Vesicles. Circulation Research, 2017, 120, 1632-1648.	2.0	728
5	Microparticles in Hemostasis and Thrombosis. Circulation Research, 2011, 108, 1284-1297.	2.0	717
6	The Phosphatidylinositol 3-Kinase-Akt Pathway Limits Lipopolysaccharide Activation of Signaling Pathways and Expression of Inflammatory Mediators in Human Monocytic Cells. Journal of Biological Chemistry, 2002, 277, 32124-32132.	1.6	699
7	Role of tissue factor in embryonic blood vessel development. Nature, 1996, 383, 73-75.	13.7	646
8	Toll-like receptor 2–mediated NF-κB activation requires a Rac1-dependent pathway. Nature Immunology, 2000, 1, 533-540.	7.0	612
9	Role of Tissue Factor in Hemostasis, Thrombosis, and Vascular Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1015-1022.	1.1	562
10	Role of the Extrinsic Pathway of Blood Coagulation in Hemostasis and Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1687-1693.	1.1	549
11	Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood, 2005, 105, 1734-1741.	0.6	512
12	The Structural Biology of Expression and Function of Tissue Factor. Thrombosis and Haemostasis, 1991, 66, 067-079.	1.8	493
13	Tissue Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 709-725.	1.1	437
14	Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nature Medicine, 2000, 6, 1355-1361.	15.2	432
15	Role of Tissue Factor in Cancer. Journal of Clinical Oncology, 2009, 27, 4834-4838.	0.8	355
16	Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor α expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood, 2001, 98, 1429-1439.	0.6	342
17	Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenecity of human platelets. Journal of Experimental Medicine, 2006, 203, 2433-2440.	4.2	327
18	Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood, 2004, 104, 3190-3197.	0.6	323

#	Article	IF	CITATIONS
19	New insights into the mechanisms of venous thrombosis. Journal of Clinical Investigation, 2012, 122, 2331-2336.	3.9	322
20	Cancer-associated pathways and biomarkers of venous thrombosis. Blood, 2017, 130, 1499-1506.	0.6	277
21	Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia. Blood, 2004, 103, 1342-1347.	0.6	276
22	The Role of Tissue Factor and Factor VIIa in Hemostasis. Anesthesia and Analgesia, 2009, 108, 1447-1452.	1.1	272
23	Tumor-derived tissue factor–positive microparticles and venous thrombosis in cancer patients. Blood, 2013, 122, 1873-1880.	0.6	271
24	Regulation of the tissue factor gene. FASEB Journal, 1995, 9, 883-889.	0.2	270
25	Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall. Blood, 2005, 105, 192-198.	0.6	266
26	Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody–induced fetal injury. Blood, 2007, 110, 2423-2431.	0.6	261
27	Neutrophil Extracellular Traps. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1724-1738.	1.1	261
28	Tissue factor–positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood, 2012, 120, 2133-2143.	0.6	254
29	Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. Journal of Clinical Investigation, 2008, 118, 1110-22.	3.9	251
30	Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis. Immunity, 2019, 50, 1401-1411.e4.	6.6	246
31	Monocytic microparticles activate endothelial cells in an IL-1β–dependent manner. Blood, 2011, 118, 2366-2374.	0.6	217
32	Venous thrombosis. Nature Reviews Disease Primers, 2015, 1, 15006.	18.1	216
33	Complete sequence of the human tissue factor gene, a highly regulated cellular receptor that initiates the coagulation protease cascade. Biochemistry, 1989, 28, 1755-1762.	1.2	215
34	Inhibition of the Tissue Factor-Thrombin Pathway Limits Infarct Size after Myocardial Ischemia-Reperfusion Injury by Reducing Inflammation. American Journal of Pathology, 2000, 157, 1849-1862.	1.9	203
35	Critical Review of Mouse Models of Venous Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 556-562.	1.1	201
36	Platelet ITAM signaling is critical for vascular integrity in inflammation. Journal of Clinical Investigation, 2013, 123, 908-16.	3.9	194

#	Article	IF	CITATIONS
37	Therapeutic strategies for thrombosis: new targets and approaches. Nature Reviews Drug Discovery, 2020, 19, 333-352.	21.5	188
38	Bacterial Endotoxin Activates the Coagulation Cascade through Gasdermin D-Dependent Phosphatidylserine Exposure. Immunity, 2019, 51, 983-996.e6.	6.6	187
39	Increased microparticle tissue factor activity in cancer patients with Venous Thromboembolism. Thrombosis Research, 2010, 125, 511-512.	0.8	184
40	Transcriptional Regulation of Tissue Factor Expression in Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 612-621.	1.1	183
41	PPARα Activators Inhibit Tissue Factor Expression and Activity in Human Monocytes. Circulation, 2001, 103, 213-219.	1.6	177
42	Mitochondria Are a Subset of Extracellular Vesicles Released by Activated Monocytes and Induce Type I IFN and TNF Responses in Endothelial Cells. Circulation Research, 2019, 125, 43-52.	2.0	177
43	Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood, 2012, 119, 5543-5552.	0.6	176
44	Neutrophil activation by the tissue factor/Factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome. Journal of Clinical Investigation, 2008, 118, 3453-61.	3.9	170
45	Multiple roles of the coagulation protease cascade during virus infection. Blood, 2014, 123, 2605-2613.	0.6	167
46	Factor XIII activity mediates red blood cell retention in venous thrombi. Journal of Clinical Investigation, 2014, 124, 3590-3600.	3.9	165
47	Patients With COVID-19 Have Elevated Levels of Circulating Extracellular Vesicle Tissue Factor Activity That Is Associated With Severity and Mortality—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 878-882.	1.1	157
48	Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood, 2010, 116, 806-814.	0.6	156
49	Tissue factor and thrombosis: The clot starts here. Thrombosis and Haemostasis, 2010, 104, 432-439.	1.8	150
50	Monocyte tissue factor–dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. Journal of Clinical Investigation, 2012, 122, 558-568.	3.9	150
51	Circulating Markers of Neutrophil Extracellular Traps Are of Prognostic Value in Patients With COVID-19. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 988-994.	1.1	146
52	Coagulation Abnormalities and Thrombosis in Patients Infected With SARS-CoV-2 and Other Pandemic Viruses. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2033-2044.	1.1	144
53	Tissue Factor Regulation by Epidermal Growth Factor Receptor and Epithelial-to-Mesenchymal Transitions: Effect on Tumor Initiation and Angiogenesis. Cancer Research, 2008, 68, 10068-10076.	0.4	140
54	Intrinsic Pathway of Coagulation and Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 331-338.	1.1	135

#	Article	IF	CITATIONS
55	Role of the coagulation system in acetaminophen-induced hepatotoxicity in mice. Hepatology, 2007, 46, 1177-1186.	3.6	132
56	Cancer-associated venous thromboembolism. Nature Reviews Disease Primers, 2022, 8, 11.	18.1	130
57	PAR-1 contributes to the innate immune response during viral infection. Journal of Clinical Investigation, 2013, 123, 1310-1322.	3.9	128
58	Dysregulation of Monocytic Nuclear Factor-κB by Oxidized Low-Density Lipoprotein. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1901-1909.	1.1	126
59	Protease-Activated Receptor-1 Contributes to Cardiac Remodeling and Hypertrophy. Circulation, 2007, 116, 2298-2306.	1.6	125
60	Cellular sources of tissue factor in endotoxemia and sepsis. Thrombosis Research, 2010, 125, S70-S73.	0.8	124
61	Insights in Vessel Development and Vascular Disorders Using Targeted Inactivation and Transfer of Vascular Endothelial Growth Factor, the Tissue Factor Receptor, and the Plasminogen System. Annals of the New York Academy of Sciences, 1997, 811, 191-206.	1.8	119
62	Induction of Tissue Factor Expression in Human Endothelial Cells by CD40 Ligand Is Mediated via Activator Protein 1, Nuclear Factor IºB, and Egr-1. Journal of Biological Chemistry, 2002, 277, 25032-25039.	1.6	119
63	New players in haemostasis and thrombosis. Thrombosis and Haemostasis, 2014, 111, 570-574.	1.8	118
64	The polyphosphate–factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood, 2015, 126, 1379-1389.	0.6	117
65	Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica, 2020, 105, 218-225.	1.7	117
66	Tissue-Specific Hemostasis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2273-2281.	1.1	115
67	Epidermal Growth Factor Receptor and PTEN Modulate Tissue Factor Expression in Glioblastoma through JunD/Activator Protein-1 Transcriptional Activity. Cancer Research, 2009, 69, 2540-2549.	0.4	114
68	Role of tissue factor in hemostasis and thrombosis. Blood Cells, Molecules, and Diseases, 2006, 36, 104-107.	0.6	113
69	RASA3 is a critical inhibitor of RAP1-dependent platelet activation. Journal of Clinical Investigation, 2015, 125, 1419-1432.	3.9	113
70	Circulating microparticle tissue factor, thromboembolism and survival in pancreaticobiliary cancers. Thrombosis Research, 2013, 132, 180-184.	0.8	111
71	Regulation of the Tissue Factor Gene in Human Monocytic Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 365-374.	1.1	107
72	Role of Tissue Factor in Venous Thrombosis. Annual Review of Physiology, 2011, 73, 515-525.	5.6	103

#	Article	IF	CITATIONS
73	A balance between tissue factor and tissue factor pathway inhibitor is required for embryonic development and hemostasis in adult mice. Blood, 2005, 105, 2777-2782.	0.6	101
74	Tissue factor, coagulation proteases, and protease-activated receptors in endotoxemia and sepsis. Critical Care Medicine, 2004, 32, S293-S297.	0.4	100
75	Vascular smooth muscle–derived tissue factor is critical for arterial thrombosis after ferric chloride–induced injury. Blood, 2009, 113, 705-713.	0.6	99
76	Differential contribution of FXa and thrombin to vascular inflammation in a mouse model of sickle cell disease. Blood, 2014, 123, 1747-1756.	0.6	98
77	Tissue Factor and Its Measurement in Whole Blood, Plasma, and Microparticles. Seminars in Thrombosis and Hemostasis, 2010, 36, 865-875.	1.5	94
78	Tissue factor promotes activation of coagulation and inflammation in a mouse model of sickle cell disease. Blood, 2012, 120, 636-646.	0.6	94
79	Tissue Factor and Cancer: Regulation, Tumor Growth, and Metastasis. Seminars in Thrombosis and Hemostasis, 2019, 45, 385-395.	1.5	94
80	Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity. Journal of Experimental Medicine, 2019, 216, 1291-1300.	4.2	94
81	Tissue factor activity is increased in a combined platelet and microparticle sample from cancer patients. Thrombosis Research, 2008, 122, 604-609.	0.8	93
82	PF4/heparin-antibody complex induces monocyte tissue factor expression and release of tissue factor positive microparticles by activation of Fcl ³ RI. Blood, 2012, 119, 5285-5293.	0.6	92
83	Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood, 2003, 101, 3940-3947.	0.6	90
84	Coagulation activation and microparticle-associated coagulant activity in cancer patients. Thrombosis and Haemostasis, 2012, 108, 160-165.	1.8	90
85	Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3544-3549.	3.3	90
86	Lipopolysaccharide Induction of Tissue Factor Expression in Rabbits. Infection and Immunity, 1999, 67, 2540-2546.	1.0	90
87	Fluid Shear Stress Induction of the Tissue Factor Promoter In Vitro and In Vivo Is Mediated by Egr-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 281-289.	1.1	89
88	Role of tissue factor in haemostasis, thrombosis, angiogenesis and inflammation: lessons from low tissue factor mice. Thrombosis and Haemostasis, 2004, 92, 444-450.	1.8	89
89	Thrombin promotes diet-induced obesity through fibrin-driven inflammation. Journal of Clinical Investigation, 2017, 127, 3152-3166.	3.9	89
90	Tissue factor deficiency and PAR-1 deficiency are protective against renal ischemia reperfusion injury. Blood, 2007, 109, 577-583.	0.6	85

#	Article	IF	CITATIONS
91	Sustained prothrombotic changes in COVID-19 patients 4 months after hospital discharge. Blood Advances, 2021, 5, 756-759.	2.5	84
92	Tissue Factor–Activated Coagulation Cascade in the Tumor Microenvironment Is Critical for Tumor Progression and an Effective Target for Therapy. Cancer Research, 2011, 71, 6492-6502.	0.4	82
93	β-Adrenergic Receptor Stimulation Transactivates Protease-Activated Receptor 1 via Matrix Metalloproteinase 13 in Cardiac Cells. Circulation, 2012, 125, 2993-3003.	1.6	80
94	Contribution of Host-Derived Tissue Factor to Tumor Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1975-1981.	1.1	79
95	Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. Journal of Experimental Medicine, 2017, 214, 2121-2138.	4.2	78
96	Excess of heme induces tissue factor-dependent activation of coagulation in mice. Haematologica, 2015, 100, 308-314.	1.7	77
97	Reduced thrombosis in Klkb1â^'/â^' mice is mediated by increased Mas receptor, prostacyclin, Sirt1, and KLF4 and decreased tissue factor. Blood, 2015, 125, 710-719.	0.6	76
98	Tissue Factor and Atherothrombosis. Journal of Atherosclerosis and Thrombosis, 2015, 22, 543-549.	0.9	74
99	Regulation of tissue factor gene expression in monocytes and endothelial cells: Thromboxane A2 as a new player. Vascular Pharmacology, 2014, 62, 57-62.	1.0	71
100	Animal Models of Thrombosis From Zebrafish to Nonhuman Primates. Circulation Research, 2016, 118, 1363-1379.	2.0	71
101	Role of tissue factor in a mouse model of thrombotic microangiopathy induced by antiphospholipid antibodies. Blood, 2009, 114, 1675-1683.	0.6	70
102	Protective Roles for Fibrin, Tissue Factor, Plasminogen Activator Inhibitor-1, and Thrombin Activatable Fibrinolysis Inhibitor, but Not Factor XI, during Defense against the Gram-Negative Bacterium <i>Yersinia enterocolitica</i> . Journal of Immunology, 2011, 187, 1866-1876.	0.4	70
103	Measurement of microparticle tissue factor activity in clinical samples: A summary of two tissue factor-dependent FXa generation assays. Thrombosis Research, 2016, 139, 90-97.	0.8	70
104	Extracellular vesicles, tissue factor, cancer and thrombosis – discussion themes of the ISEV 2014 Educational Day. Journal of Extracellular Vesicles, 2015, 4, 26901.	5.5	69
105	Roles of Coagulation Proteases and PARs (Protease-Activated Receptors) in Mouse Models of Inflammatory Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 13-24.	1.1	68
106	Protease-Activated Receptor 2 Deficiency Reduces Cardiac Ischemia/Reperfusion Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2136-2142.	1.1	66
107	Cancer Therapy–Associated Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1291-1305.	1.1	66
108	Hepatocyte tissue factor activates the coagulation cascade in mice. Blood, 2013, 121, 1868-1874.	0.6	64

#	Article	IF	CITATIONS
109	Thrombo-Inflammation in Cardiovascular Disease: An Expert Consensus Document from the Third Maastricht Consensus Conference on Thrombosis. Thrombosis and Haemostasis, 2020, 120, 538-564.	1.8	64
110	Eculizumab therapy results in rapid and sustained decreases in markers of thrombin generation and inflammation in patients with PNH independent of its effects on hemolysis and microparticle formation. Thrombosis Research, 2012, 130, 361-368.	0.8	61
111	Protease-Activated Receptor-2 Regulates the Innate Immune Response to Viral Infection in a Coxsackievirus B3–Induced Myocarditis. Journal of the American College of Cardiology, 2013, 62, 1737-1745.	1.2	61
112	Platelet Inhibitors Reduce Rupture in a Mouse Model of Established Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2032-2041.	1.1	61
113	Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β–induced Serpine1. Journal of Clinical Investigation, 2019, 129, 1654-1670.	3.9	60
114	Tissue Factor in Hemostasis and Thrombosis. Seminars in Thrombosis and Hemostasis, 2006, 32, 005-010.	1.5	59
115	Sources of tissue factor that contribute to thrombosis after rupture of an atherosclerotic plaque. Thrombosis Research, 2012, 129, S30-S33.	0.8	59
116	Microparticleâ€associated tissue factor activity in patients with pancreatic cancer: correlation with clinicopathological features. European Journal of Clinical Investigation, 2013, 43, 277-285.	1.7	59
117	PARP-14 combines with tristetraprolin in the selective posttranscriptional control of macrophage tissue factor expression. Blood, 2014, 124, 3646-3655.	0.6	58
118	Hyperlipidemia, tissue factor, coagulation, and simvastatin. Trends in Cardiovascular Medicine, 2014, 24, 95-98.	2.3	57
119	Measurement of Tissue Factor Activity in Whole Blood. Thrombosis and Haemostasis, 2000, 83, 445-454.	1.8	54
120	Detection of endogenous tissue factor levels in plasma using the calibrated automated thrombogram assay. Thrombosis Research, 2010, 125, 90-96.	0.8	54
121	Low levels of tissue factor lead to alveolar haemorrhage, potentiating murine acute lung injury and oxidative stress. Thorax, 2012, 67, 1032-1039.	2.7	53
122	Measurement of tissue factor activity in extracellular vesicles from human plasma samples. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 44-48.	1.0	52
123	Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis, 2020, 307, 80-86.	0.4	52
124	Microvesicles as risk markers for venous thrombosis. Expert Review of Hematology, 2013, 6, 91-101.	1.0	51
125	Soluble angiotensinâ€converting enzyme 2 is transiently elevated in COVIDâ€19 and correlates with specific inflammatory and endothelial markers. Journal of Medical Virology, 2021, 93, 5908-5916.	2.5	50
126	Proteaseâ€activated receptors and myocardial infarction. IUBMB Life, 2011, 63, 383-389.	1.5	47

#	Article	IF	CITATIONS
127	Role of Tissue Factor in Atherothrombosis. Current Atherosclerosis Reports, 2012, 14, 394-401.	2.0	47
128	Prothrombotic mechanisms and anticoagulant therapy in dogs with immuneâ€mediated hemolytic anemia. Journal of Veterinary Emergency and Critical Care, 2013, 23, 3-13.	0.4	46
129	Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles. Blood Advances, 2021, 5, 1682-1694.	2.5	46
130	Tissue Factor and Tissue Factor Pathway Inhibitor as Key Regulators of Global Hemostasis: Measurement of Their Levels in Coagulation Assays. Seminars in Thrombosis and Hemostasis, 2010, 36, 764-771.	1.5	45
131	Proteasome inhibitors block VCAM-1 and ICAM-1 gene expression in endothelial cells without affecting nuclear translocation of nuclear factor-ϰB. European Journal of Immunology, 1996, 26, 839-845.	1.6	44
132	Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis. Blood, 2010, 116, 5037-5044.	0.6	44
133	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	1.8	44
134	Anthracycline treatment of the human monocytic leukemia cell line THP-1 increases phosphatidylserine exposure and tissue factor activity. Thrombosis Research, 2012, 129, 197-203.	0.8	43
135	Evaluation of venous thrombosis and tissue factor in epithelial ovarian cancer. Gynecologic Oncology, 2017, 146, 146-152.	0.6	43
136	Choosing a Mouse Model of Venous Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 311-318.	1.1	43
137	Extracellular vesicles exposing tissue factor for the prediction of venous thromboembolism in patients with cancer: A prospective cohort study. Thrombosis Research, 2018, 166, 54-59.	0.8	42
138	Distinct Pathogenesis of Pancreatic Cancer Microvesicle–Associated Venous Thrombosis Identifies New Antithrombotic Targets In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 772-786.	1.1	42
139	PAR2 (Protease-Activated Receptor 2) Deficiency Attenuates Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1271-1282.	1.1	42
140	Mice deficient in tissue factor demonstrate attenuated intimal hyperplasia in response to vascular injury and decreased smooth muscle cell migration. Thrombosis and Haemostasis, 2004, 92, 451-458.	1.8	41
141	Atherosclerosis in Mice Is Not Affected by a Reduction in Tissue Factor Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 555-562.	1.1	41
142	Protease Activated Receptor-2 Contributes to Heart Failure. PLoS ONE, 2013, 8, e81733.	1.1	41
143	The Antithrombotic Effects of Statins. Annual Review of Medicine, 2014, 65, 433-445.	5.0	41
144	Platelet Signaling Pathways and New Inhibitors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e28-e35.	1.1	41

#	Article	IF	CITATIONS
145	Comparison of the coagulopathies associated with COVIDâ€19 and sepsis. Research and Practice in Thrombosis and Haemostasis, 2021, 5, e12525.	1.0	41
146	Regulation of Alveolar Procoagulant Activity and Permeability in Direct Acute Lung Injury by Lung Epithelial Tissue Factor. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 719-727.	1.4	40
147	Microvesicle Tissue Factor Activity and Interleukin-8 Levels are Associated with Mortality in Patients with Influenza A/H1N1 Infection. Critical Care Medicine, 2016, 44, e574-e578.	0.4	40
148	Quantification of citrullinated histones: Development of an improved assay to reliably quantify nucleosomal H3Cit in human plasma. Journal of Thrombosis and Haemostasis, 2020, 18, 2732-2743.	1.9	40
149	Protease-Activated Receptor 1 and Hematopoietic Cell Tissue Factor Are Required for Hepatic Steatosis in Mice Fed a Western Diet. American Journal of Pathology, 2011, 179, 2278-2289.	1.9	39
150	Targeting Coagulation Factor Xa Promotes Regression of Advanced Atherosclerosis in Apolipoprotein-E Deficient Mice. Scientific Reports, 2019, 9, 3909.	1.6	39
151	Effect of blood flow on platelets, leukocytes, and extracellular vesicles in thrombosis of simulated neonatal extracorporeal circulation. Journal of Thrombosis and Haemostasis, 2020, 18, 399-410.	1.9	38
152	Inflammasome activation promotes venous thrombosis through pyroptosis. Blood Advances, 2021, 5, 2619-2623.	2.5	38
153	On the Trail of Microparticles. Circulation Research, 2009, 104, 925-927.	2.0	37
154	Strengths and weaknesses of a new mouse model of thrombosis induced by inferior vena cava stenosis: communication from the SSC of the ISTH. Journal of Thrombosis and Haemostasis, 2014, 12, 571-573.	1.9	37
155	Tissue factor-dependent coagulation contributes to α-naphthylisothiocyanate-induced cholestatic liver injury in mice. American Journal of Physiology - Renal Physiology, 2009, 296, G840-G849.	1.6	36
156	Hepatocyte tissue factor contributes to the hypercoagulable state in a mouse model of chronic liver injury. Journal of Hepatology, 2016, 64, 53-59.	1.8	36
157	Plasma Kallikrein Contributes to Coagulation in the Absence of Factor XI by Activating Factor IX. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 103-111.	1.1	36
158	Plasminogen activator inhibitor 1 and venous thrombosis in pancreatic cancer. Blood Advances, 2021, 5, 487-495.	2.5	36
159	Functional implications of tissue factor localization to cell-cell contacts in myocardium. Journal of Pathology, 2000, 192, 121-130.	2.1	35
160	IL-13 Augments Compressive Stress–Induced Tissue Factor Expression in Human Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 524-531.	1.4	35
161	Lipopolysaccharide Induction of Gene Expression in Human Monocytic Cells. Immunologic Research, 2000, 21, 247-252.	1.3	34
162	Mouse models of cancer-associated thrombosis. Thrombosis Research, 2018, 164, S48-S53.	0.8	34

#	Article	IF	CITATIONS
163	Choosing a mouse model of venous thrombosis: a consensus assessment of utility and application. Journal of Thrombosis and Haemostasis, 2019, 17, 699-707.	1.9	34
164	Alternatively spliced tissue factor – One cut too many?. Thrombosis and Haemostasis, 2007, 97, 5-8.	1.8	32
165	Coagulation, Protease-Activated Receptors, and Viral Myocarditis. Journal of Cardiovascular Translational Research, 2014, 7, 203-211.	1.1	32
166	Tissue Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1986-1988.	1.1	31
167	Circulating microparticle tissue factor activity Is increased in patients with cirrhosis. Hepatology, 2014, 60, 1793-1795.	3.6	31
168	Microvesicle-associated tissue factor procoagulant activity for the preoperative diagnosis of ovarian cancer. Thrombosis Research, 2016, 141, 39-48.	0.8	31
169	Protease-Activated Receptor 1 Contributes to Angiotensin II-Induced Cardiovascular Remodeling and Inflammation. Cardiology, 2017, 136, 258-268.	0.6	30
170	Transcriptional Regulation of the Tissue Factor Gene by Progestins in Human Endometrial Stromal Cells1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 926-930.	1.8	29
171	Neutrophils, NETs, and immunothrombosis. Blood, 2018, 132, 1360-1361.	0.6	29
172	Tissue factor expression, extracellular vesicles, and thrombosis after infection with the respiratory viruses influenza A virus and coronavirus. Journal of Thrombosis and Haemostasis, 2021, 19, 2652-2658.	1.9	29
173	The Molecular Biology of Initiation of Coagulation by Tissue Factor. Current Studies in Hematology and Blood Transfusion, 1991, 58, 15-21.	0.2	28
174	Factor Xa Binding to Annexin 2 Mediates Signal Transduction via Protease-Activated Receptor 1. Circulation Research, 2008, 102, 457-464.	2.0	27
175	Thrombosis in Cancer: Research Priorities Identified by a National Cancer Institute/National Heart, Lung, and Blood Institute Strategic Working Group. Cancer Research, 2016, 76, 3671-3675.	0.4	27
176	Cancer cell-derived tissue factor-positive extracellular vesicles: biomarkers of thrombosis and survival. Current Opinion in Hematology, 2019, 26, 349-356.	1.2	27
177	Fibrin Facilitates Both Innate and T Cell–Mediated Defense againstYersinia pestis. Journal of Immunology, 2013, 190, 4149-4161.	0.4	26
178	Increasing the sensitivity of the human microvesicle tissue factor activity assay. Thrombosis Research, 2019, 182, 64-74.	0.8	26
179	Venous Thromboembolism: A Need for More Public Awareness and Research Into Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 367-369.	1.1	25
180	Prognostic value of circulating markers of neutrophil activation, neutrophil extracellular traps, coagulation and fibrinolysis in patients with terminal cancer. Scientific Reports, 2021, 11, 5074.	1.6	25

#	Article	IF	CITATIONS
181	A benzothiophene-carboxamide is a potent inhibitor of IL-1Î ² induced VCAM-1 gene expression in human endothelial cells. FEBS Letters, 1996, 382, 323-326.	1.3	24
182	Wound healing in hemophilia B mice and low tissue factor mice. Thrombosis Research, 2010, 125, S74-S77.	0.8	24
183	Anticoagulant SERPINs: Endogenous Regulators of Hemostasis and Thrombosis. Frontiers in Cardiovascular Medicine, 2022, 9, 878199.	1.1	24
184	Impact of Chemotherapy on Thrombin Generation and on the Protein C Pathway in Breast Cancer Patients. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 2010, 37, 88-97.	0.5	23
185	A monocyteâ€∢NFâ€endothelial activation axis in sickle transgenic mice: Therapeutic benefit from TNF blockade. American Journal of Hematology, 2017, 92, 1119-1130.	2.0	23
186	Effect of chemotherapy and longitudinal analysis of circulating extracellular vesicle tissue factor activity in patients with pancreatic and colorectal cancer. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 636-643.	1.0	23
187	Del-etion of Microvesicles From the Circulation. Circulation, 2012, 125, 1601-1604.	1.6	22
188	Hemodynamics associated with atrial fibrillation directly alters thrombotic potential of endothelial cells. Thrombosis Research, 2016, 143, 34-39.	0.8	22
189	Protease-Activated Receptor 1 Enhances Poly I:C Induction of the Antiviral Response in Macrophages and Mice. Journal of Innate Immunity, 2017, 9, 181-192.	1.8	22
190	The factor Xa inhibitor rivaroxaban reduces cardiac dysfunction in a mouse model of myocardial infarction. Thrombosis Research, 2018, 167, 128-134.	0.8	22
191	Thrombinâ€₽AR1 signaling in pancreatic cancer promotes an immunosuppressive microenvironment. Journal of Thrombosis and Haemostasis, 2021, 19, 161-172.	1.9	22
192	Platelet-Mediated NET Release Amplifies Coagulopathy and Drives Lung Pathology During Severe Influenza Infection. Frontiers in Immunology, 2021, 12, 772859.	2.2	22
193	Platelet polyphosphate: an endogenous activator of coagulation factor XII. Journal of Thrombosis and Haemostasis, 2010, 8, 865-867.	1.9	21
194	The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis. Biochemical and Biophysical Research Communications, 2014, 454, 262-268.	1.0	21
195	Platelets and viruses. Platelets, 2021, 32, 325-330.	1.1	21
196	Natural IgM antibodies inhibit microvesicle-driven coagulation and thrombosis. Blood, 2021, 137, 1406-1415.	0.6	21
197	Role of Coagulation Factors in Cerebral Venous Sinus and Cerebral Microvascular Thrombosis. Neurosurgery, 2010, 66, 560-566.	0.6	20
198	Role of Tissue Factor in Mycobacterium tuberculosis-Induced Inflammation and Disease Pathogenesis. PLoS ONE, 2014, 9, e114141.	1.1	20

#	Article	IF	CITATIONS
199	CalDAG-GEFI Deficiency Reduces Atherosclerotic Lesion Development in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 792-799.	1.1	20
200	Dual Anticoagulant and Antiplatelet Therapy for Coronary Artery Disease and Peripheral Artery Disease Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 726-732.	1.1	20
201	Protease-activated receptor 1 activation enhances doxorubicin-induced cardiotoxicity. Journal of Molecular and Cellular Cardiology, 2018, 122, 80-87.	0.9	20
202	Tissue factor in health and disease. Frontiers in Bioscience - Elite, 2012, E4, 358.	0.9	19
203	Comparison of microvesicle tissue factor activity in non-cancer severely ill patients and cancer patients. Thrombosis Research, 2018, 165, 1-5.	0.8	19
204	Protease-activated receptor 4 protects mice from Coxsackievirus B3 and H1N1 influenza A virus infection. Cellular Immunology, 2019, 344, 103949.	1.4	19
205	Tissue Factor and Extracellular Vesicles: Activation of Coagulation and Impact on Survival in Cancer. Cancers, 2021, 13, 3839.	1.7	19
206	Circulating tissue factorâ€positive extracellular vesicles and their association with thrombosis in different diseases. Immunological Reviews, 2022, 312, 61-75.	2.8	19
207	$\rm NF-\hat{I}^{2}B$ Mediated Transcription in Human Monocytic Cells and Endothelial Cells. Trends in Cardiovascular Medicine, 1998, 8, 138-142.	2.3	18
208	The Role of the Tissue Factor-Thrombin Pathway in Cardiac Ischemia-Reperfusion Injury. Seminars in Vascular Medicine, 2003, 03, 193-198.	2.1	18
209	DVT: A New Era in Anticoagulant Therapy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 369-371.	1.1	18
210	Role of Fibrinogen and Protease-Activated Receptors in Acute Xenobiotic-Induced Cholestatic Liver Injury. Toxicological Sciences, 2011, 119, 233-243.	1.4	18
211	Δ9-Tetrahydrocannabinol (THC) enhances lipopolysaccharide-stimulated tissue factor in human monocytes and monocyte-derived microvesicles. Journal of Inflammation, 2015, 12, 39.	1.5	18
212	A matched cross-sectional study of the association between circulating tissue factor activity, immune activation and advanced liver fibrosis in hepatitis C infection. BMC Infectious Diseases, 2015, 15, 190.	1.3	18
213	Inactivation of Factor VIIa by Antithrombin In Vitro, Ex Vivo and In Vivo: Role of Tissue Factor and Endothelial Cell Protein C Receptor. PLoS ONE, 2014, 9, e103505.	1.1	18
214	Antibody-based targeting of alternatively spliced tissue factor: a new approach to impede the primary growth and spread of pancreatic ductal adenocarcinoma. Oncotarget, 2016, 7, 25264-25275.	0.8	18
215	Tissue factor contributes to neutrophil CD11b expression in alpha-naphthylisothiocyanate-treated mice. Toxicology and Applied Pharmacology, 2011, 250, 256-262.	1.3	17
216	Thrombin-independent contribution of tissue factor to inflammation and cardiac hypertrophy in a mouse model of sickle cell disease. Blood, 2016, 127, 1371-1373.	0.6	17

#	Article	IF	CITATIONS
217	Hemostatic Biomarkers and Venous Thromboembolism Are Associated With Mortality and Response to Chemotherapy in Patients With Pancreatic Cancer. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2837-2847.	1.1	17
218	Anticoagulation increases alveolar hemorrhage in mice infected with influenza A. Physiological Reports, 2016, 4, e13071.	0.7	16
219	Evaluation of different commercial antibodies for their ability to detect human and mouse tissue factor by western blotting. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 1013-1023.	1.0	16
220	MPs or ICs?. Blood, 2011, 117, 1101-1102.	0.6	15
221	Quantification of Viral and Host Biomarkers in the Liver of Rhesus Macaques. American Journal of Pathology, 2020, 190, 1449-1460.	1.9	15
222	COVID-19 is Associated with an Acquired Factor XIII Deficiency. Thrombosis and Haemostasis, 2021, 121, 1668-1669.	1.8	15
223	A thrombin-PAR1/2 feedback loop amplifies thromboinflammatory endothelial responses to the viral RNA analogue poly(I:C). Blood Advances, 2021, 5, 2760-2774.	2.5	15
224	Host fibrinogen drives antimicrobial function in <i>Staphylococcus aureus</i> peritonitis through bacterial-mediated prothrombin activation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
225	Dysregulated coagulation associated with hypofibrinogenaemia and plasma hypercoagulability: Implications for identifying coagulopathic mechanisms in humans. Thrombosis and Haemostasis, 2012, 108, 516-526.	1.8	14
226	Myeloid tissue factor does not modulate lung inflammation or permeability during experimental acute lung injury. Scientific Reports, 2016, 6, 22249.	1.6	14
227	Editorial Commentary: Tissue factor expression by the endothelium: Coagulation or inflammation?. Trends in Cardiovascular Medicine, 2016, 26, 304-305.	2.3	14
228	Association of D-dimer with Plaque Characteristics and Plasma Biomarkers of Oxidation-Specific Epitopes in Stable Subjects with Coronary Artery Disease. Journal of Cardiovascular Translational Research, 2018, 11, 221-229.	1.1	14
229	Circulating Extracellular Vesicle Tissue Factor Activity During Orthohantavirus Infection Is Associated With Intravascular Coagulation. Journal of Infectious Diseases, 2020, 222, 1392-1399.	1.9	14
230	Modelâ€dependent contributions of FXII and FXI to venous thrombosis in mice. Journal of Thrombosis and Haemostasis, 2020, 18, 2899-2909.	1.9	14
231	Update from the laboratory: mechanistic studies of pathways of cancer-associated venous thrombosis using mouse models. Hematology American Society of Hematology Education Program, 2019, 2019, 182-186.	0.9	14
232	Blood Coagulation and Blood Vessel Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2364-2366.	1.1	13
233	Platelet tissue factor: To be or not to be. Thrombosis Research, 2013, 132, 3-5.	0.8	13
234	Fas-Induced Apoptosis Increases Hepatocyte Tissue Factor Procoagulant Activity In Vitro and In Vivo. Toxicological Sciences, 2014, 141, 453-464.	1.4	13

#	Article	IF	CITATIONS
235	Reporting Sex and Sex Differences in Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e171-e184.	1.1	13
236	How useful are ferric chloride models of arterial thrombosis?. Platelets, 2020, 31, 432-438.	1.1	13
237	Both G protein–coupled and immunoreceptor tyrosine-based activation motif receptors mediate venous thrombosis in mice. Blood, 2022, 139, 3194-3203.	0.6	13
238	Complying With the National Institutes of Health Guidelines and Principles for Rigor and Reproducibility. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1303-1304.	1.1	12
239	Detection of tissue factor-positive extracellular vesicles by laser scanning confocal microscopy. Thrombosis Research, 2017, 150, 65-72.	0.8	12
240	Regulation of Tissue Factor Gene Expression in Human Monocytic and Endothelial Cells. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 1996, 26, 17-19.	0.5	11
241	Effect of PAR-2 Deficiency in Mice on KC Expression after Intratracheal LPS Administration. Journal of Signal Transduction, 2011, 2011, 1-6.	2.0	11
242	Mouse Models, Risk Factors, and Treatments of Venous Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 554-555.	1.1	11
243	Tissue Factor: Catch Me If You Can!. Journal of Clinical Oncology, 2017, 35, 1128-1130.	0.8	11
244	PAR1 regulation of CXCL1 expression and neutrophil recruitment to the lung in mice infected with influenza A virus. Journal of Thrombosis and Haemostasis, 2021, 19, 1103-1111.	1.9	11
245	Neutrophil extracellular traps and cancer-associated thrombosis. Thrombosis Research, 2022, 213, S35-S41.	0.8	11
246	Theme 2: Epidemiology, Biomarkers, and Imaging of Venous Thromboembolism (and postthrombotic) Tj ETQq0 () 0 ₀ gBT /C	Overlock 10 Ti
247	Toward standardization of assays measuring extracellular vesicleâ€associated tissue factor activity. Journal of Thrombosis and Haemostasis, 2019, 17, 1261-1264.	1.9	10
248	Regulation of thrombin-induced plasminogen activator inhibitor-1 in 4T1 murine breast cancer cells. Blood Coagulation and Fibrinolysis, 2011, 22, 576-582.	0.5	9
249	Cell typeâ€specific mechanisms coupling proteaseâ€activated receptorâ€1 to infectious colitis pathogenesis. Journal of Thrombosis and Haemostasis, 2020, 18, 91-103.	1.9	9
250	The red blood cell death receptor and thrombosis. Journal of Clinical Investigation, 2018, 128, 3747-3749.	3.9	9
251	Genetic deletion of platelet PAR4 results in reduced thrombosis and impaired hemostatic plug stability. Journal of Thrombosis and Haemostasis, 2022, 20, 422-433.	1.9	9
252	Tissue factor and its procoagulant activity on cancerâ€associated thromboembolism in pancreatic cancer: Comment by Mackman et al Cancer Science, 2022, 113, 1885-1887.	1.7	9

#	Article	IF	CITATIONS
253	Use of Mouse Models to Study the Role of Tissue Factor in Tumor Biology. Seminars in Thrombosis and Hemostasis, 2008, 34, 182-186.	1.5	8
254	New Targets for Atherothrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1607-1608.	1.1	8
255	Caspase Inhibition Reduces Hepatic Tissue Factor-Driven Coagulation In Vitro and In Vivo. Toxicological Sciences, 2018, 162, 396-405.	1.4	8
256	Patients with severe orthohantavirus cardiopulmonary syndrome due to Sin Nombre Virus infection have increased circulating extracellular vesicle tissue factor and an activated coagulation system. Thrombosis Research, 2019, 179, 31-33.	0.8	8
257	Low extracellular vesicle–associated tissue factor activity in patients with persistent lupus anticoagulant and a history of thrombosis. Annals of Hematology, 2019, 98, 313-319.	0.8	8
258	Annual Report on Sex in Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e1-e9.	1.1	8
259	Differential roles of factors IX and XI in murine placenta and hemostasis under conditions of low tissue factor. Blood Advances, 2020, 4, 207-216.	2.5	8
260	A clinical practice-based evaluation of the RIETE score in predicting occult cancer in patients with venous thromboembolism. Journal of Thrombosis and Thrombolysis, 2019, 48, 111-118.	1.0	7
261	Response by Mackman et al to Letter Regarding Article, "Patients With COVID-19 Have Elevated Levels of Circulating Extracellular Vesicle Tissue Factor Activity That Is Associated With Severity and Mortality—Brief Reportâ€: Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e381-e382.	1.1	7
262	Safety and Efficacy of Thrombin-JMI: A Multidisciplinary Expert Group Consensus. Clinical and Applied Thrombosis/Hemostasis, 2011, 17, 39-45.	0.7	6
263	Roles of PAR1 and PAR2 in viral myocarditis. Thrombosis Research, 2014, 133, S18-S20.	0.8	6
264	Rivaroxaban does not affect growth of human pancreatic tumors in mice. Journal of Thrombosis and Haemostasis, 2019, 17, 2169-2173.	1.9	6
265	Cell type-specific roles of PAR1 in Coxsackievirus B3 infection. Scientific Reports, 2021, 11, 14264.	1.6	6
266	Elevated factor V activity and antigen levels in patients with Covidâ€19 are related to disease severity and 30â€day mortality. American Journal of Hematology, 2021, 96, E98-E100.	2.0	6
267	Protective and detrimental effects of neuroectodermal cell–derived tissue factor in mouse models of stroke. JCI Insight, 2016, 1, .	2.3	6
268	Evaluation of a new beadâ€based assay to measure levels of human tissue factor antigen in extracellular vesicles in plasma. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12677.	1.0	6
269	The regulation of uterine tissue factor by estrogen. Endocrine, 1995, 3, 177-184.	2.2	5
270	MP's and VTE's: Fact or fiction. Thrombosis Research, 2011, 128, 505-506.	0.8	5

#	Article	IF	CITATIONS
271	Myeloid cell tissue factor does not contribute to venous thrombogenesis in an electrolytic injury model. Thrombosis Research, 2012, 130, 640-645.	0.8	5
272	Comment on "Tissue factor expressed by microparticles is associated with mortality but not with thrombosis in cancer patientsâ€. Thrombosis and Haemostasis, 2014, 111, 180-181.	1.8	5
273	Mouse models of venous thrombosis are not equal. Blood, 2016, 127, 2510-2511.	0.6	5
274	The Clot Thickens in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 425-426.	1.1	5
275	Cardiovascular Disease in Women. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 277-278.	1.1	4
276	2011 Nobel Prize in Physiology or Medicine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2767-2768.	1.1	4
277	A combined deficiency of tissue factor and PAR-4 is associated with fatal pulmonary hemorrhage in mice. Thrombosis Research, 2016, 146, 46-50.	0.8	4
278	Eosinophils, atherosclerosis, and thrombosis. Blood, 2019, 134, 1781-1782.	0.6	4
279	Cardiac Tissue Factor Regulates Inflammation, Hypertrophy, and Heart Failure in Mouse Model of Type 1 Diabetes. Diabetes, 2021, 70, 2131-2146.	0.3	4
280	Direct Oral Anticoagulants and Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 553-564.	1.1	4
281	Uremic Serum and Ubiquitylation of Tissue Factor. Circulation, 2013, 127, 320-321.	1.6	3
282	Response by Daugherty et al to Letter Regarding Article, "Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies: A Statement From the Arteriosclerosis, Thrombosis, and Vascular Biology Council― Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e101-e102.	1.1	3
283	The Intrinsic Pathway does not Contribute to Activation of Coagulation in Mice Bearing Human Pancreatic Tumors Expressing Tissue Factor. Thrombosis and Haemostasis, 2021, 121, 967-970.	1.8	3
284	Effects of storage and leukocyte reduction on the concentration and procoagulant activity of extracellular vesicles in canine packed red cells. Journal of Veterinary Emergency and Critical Care, 2021, 31, 221-230.	0.4	3
285	Myeloid cell-derived coagulation tissue factor is associated with renal tubular damage in mice fed an adenine diet. Scientific Reports, 2021, 11, 12159.	1.6	3
286	Myeloid Protease-Activated Receptor-2 Contributes to Influenza A Virus Pathology in Mice. Frontiers in Immunology, 2021, 12, 791017.	2.2	3
287	Effect of combining aspirin and rivaroxaban on atherosclerosis in mice. Atherosclerosis, 2022, 345, 7-14.	0.4	3

Tissue Factor Expression by the Endothelium. , 2007, , 932-938.

2

#	Article	IF	CITATIONS
289	Role of Tissue Factor in Cancer. Cancer Investigation, 2009, 27, 53-62.	0.6	2
290	Bleeding hearts. Blood, 2009, 113, 500-501.	0.6	2
291	Comment on "Tissue Factor-Dependent Chemokine Production Aggravates Experimental Colitisâ€. Molecular Medicine, 2011, 17, 1131-1131.	1.9	2
292	Letter to Editor response: Endothelial cell tissue factor and coagulation. Trends in Cardiovascular Medicine, 2017, 27, 157.	2.3	2
293	The uremic solute-AHR-tissue factor axis in vascular cells, mouse models and thrombosis in chronic kidney disease patients. Annals of Translational Medicine, 2018, 6, 225-225.	0.7	2
294	Tissue factor and oxidative stress. Blood, 2018, 131, 2094-2095.	0.6	2
295	Functional implications of tissue factor localization to cell–cell contacts in myocardium. , 2000, 192, 121.		2
296	mTORâ€dependent ILâ€10 expression inhibits LPS induction of tissue factor and cytokines in macrophages FASEB Journal, 2009, 23, 570.5.	0.2	2
297	New Cellular Source of TF (Tissue Factor)-Positive Extracellular Vesicles in the Circulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 266-268.	1.1	2
298	Web of Science's Citation Median Metrics Overcome the Major Constraints of the Journal Impact Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 367-371.	1.1	2
299	Response to Letter Regarding Article, "Protease-Activated Receptor-1 Contributes to Cardiac Remodeling and Hypertrophy― Circulation, 2008, 117, .	1.6	1
300	Description of the first mutation in the human tissue factor gene associated with a bleeding tendency. Journal of Thrombosis and Haemostasis, 2021, 19, 3-6.	1.9	1
301	Intravascular but Not Extravascular Tissue Factor Is Required for Fibrin Generation During Thrombus Formation in Cremaster Arterioles in Living Mice Subjected to Laser Injury Blood, 2009, 114, 332-332.	0.6	1
302	Investigating the Roles of Platelet PAR4 in Hemostasis, Thrombosis and Viral Infection Using a Newly Generated PAR4 Floxed Mouse. Blood, 2021, 138, 1000-1000.	0.6	1
303	Role of tissue factor in delayed bone repair induced by diabetic state in mice. PLoS ONE, 2021, 16, e0260754.	1.1	1
304	Effect of heparanase inhibitor on tissue factor overexpression in platelets and endothelial cells induced by antiâ€Î²2 PI antibodies: Comment from Mackman et al Journal of Thrombosis and Haemostasis, 2022, 20, 260-261.	1.9	1
305	Corrigendum to "Measurement of microparticle tissue factor activity in clinical samples: A summary of two tissue factor-dependent FXa generation assays―[Thromb. Res. 139 (2016) 90–97]. Thrombosis Research, 2016, 147, 63.	0.8	0
306	Chemotherapy Increases Stroke: Fact or Fiction?. Thrombosis and Haemostasis, 2020, 120, 534-536.	1.8	0

#	Article	IF	CITATIONS
307	Linda "Kirt―Curtiss, PhD, 1943–2021. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1837-1838.	1.1	0
308	Genetic and pharmacologic alteration of PI3K/Akt activity modulates LPSâ€induced cytokine expression in vitro and in vivo FASEB Journal, 2006, 20, A647.	0.2	0
309	Regulation of Tissue Factor by NF-kB Transcription Factor p50 Is Essential for the Pathogeneses of Deep Vein Thrombosis and Arterial Restenosis Blood, 2006, 108, 1458-1458.	0.6	0
310	Evaluation of the assays to measure microparticle tissue factor activity in plasma. Japanese Journal of Thrombosis and Hemostasis, 2015, 26, 327-329.	0.1	0
311	Abstract 607: Kininogen Regulates Thrombin Generation in a Mouse Model of Sickle Cell Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0
312	Bacterial Endotoxin Activates Coagulation Cascades Through GSDMD-Dependent Phosphatidylserine Exposure. SSRN Electronic Journal, 0, , .	0.4	0
313	Therapeutic potential of granulocyte microvesicles in sepsis. Blood, 2022, 139, 2269-2271.	0.6	0