
Kunihito Koumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6783899/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6, 129-134.	27.5	910
2	Flexible n-type thermoelectric materials by organic intercalation of layered transition metalÂdichalcogenide TiS2. Nature Materials, 2015, 14, 622-627.	27.5	612
3	Oxide Thermoelectric Materials: A Nanostructuring Approach. Annual Review of Materials Research, 2010, 40, 363-394.	9.3	401
4	Recent Progress in Oxide Thermoelectric Materials: p-Type Ca ₃ Co ₄ O ₉ and n-Type SrTiO ₃ ^{â^'} . Inorganic Chemistry, 2008, 47, 8429-8436.	4.0	328
5	Complex Oxide Materials for Potential Thermoelectric Applications. MRS Bulletin, 2006, 31, 206-210.	3.5	327
6	Thermoelectric Ceramics for Energy Harvesting. Journal of the American Ceramic Society, 2013, 96, 1-23.	3.8	286
7	Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. Journal of Materials Chemistry, 2003, 13, 608-613.	6.7	256
8	A novel high-performance photovoltaic–thermoelectric hybrid device. Energy and Environmental Science, 2011, 4, 3676.	30.8	239
9	Thermoelectric Properties of Homologous Compounds in the ZnO-In2O3 System. Journal of the American Ceramic Society, 1996, 79, 2193-2196.	3.8	208
10	Gas Sensing Characteristics of Porous ZnO and Pt/ZnO Ceramics. Journal of the American Ceramic Society, 1985, 68, 40-43.	3.8	185
11	The effect of surface charge on hydroxyapatite nucleation. Biomaterials, 2004, 25, 3915-3921.	11.4	161
12	Bioinspired Ceramic Thin Film Processing:  Present Status and Future Perspectives. Crystal Growth and Design, 2005, 5, 1983-2017.	3.0	147
13	Grain Size Dependence of Thermoelectric Performance of Nb-Doped SrTiO3 Polycrystals. Journal of the Ceramic Society of Japan, 2006, 114, 102-105.	1.3	146
14	Enhanced effective mass in doped SrTiO3 and related perovskites. Physica B: Condensed Matter, 2009, 404, 2202-2212.	2.7	144
15	Thermoelectric properties of single crystal CuAlO2 with a layered structure. Journal of Materials Chemistry, 2001, 11, 251-252.	6.7	136
16	Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Science and Technology of Advanced Materials, 2010, 11, 044306.	6.1	131
17	Acidâ^'Base Properties and Zeta Potentials of Self-Assembled Monolayers Obtained via in Situ Transformationsâ€. Langmuir, 2004, 20, 8693-8698.	3.5	130
18	A solution-processed TiS ₂ /organic hybrid superlattice film towards flexible thermoelectric devices. Journal of Materials Chemistry A, 2017, 5, 564-570.	10.3	130

#	Article	IF	CITATIONS
19	High-Resolution Electron Microscopy Observations of Stacking Faults in beta-SiC. Journal of the American Ceramic Society, 1989, 72, 1985-1987.	3.8	128
20	Stacking Faults in beta-SiC Formed during Carbothermal Reduction of SiO2. Journal of the American Ceramic Society, 1996, 79, 1777-1782.	3.8	128
21	Low-Thermal-Conductivity (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) Misfit Layer Compounds for Bulk Thermoelectric Materials. Materials, 2010, 3, 2606-2617.	2.9	125
22	Morphology and Stacking Faults of βâ€5ilicon Carbide Whisker Synthesized by Carbothermal Reduction. Journal of the American Ceramic Society, 2000, 83, 2584-2592.	3.8	121
23	Site-Selective Deposition and Morphology Control of UV- and Visible-Light-Emitting ZnO Crystals. Crystal Growth and Design, 2006, 6, 75-78.	3.0	120
24	TiO2 nanoparticles prepared using an aqueous peroxotitanate solution. Ceramics International, 2004, 30, 1365-1368.	4.8	111
25	Room-Temperature Preparation of ZrO2 Precursor Thin Film in an Aqueous Peroxozirconium-Complex Solution. Chemistry of Materials, 2004, 16, 2615-2622.	6.7	110
26	Interfacial Thermal Resistance and Thermal Conductivity in Nanograined SrTiO ₃ . Applied Physics Express, 2010, 3, 031101.	2.4	101
27	Magnetoresponsive Onâ€Đemand Release of Hybrid Liposomes Formed from Fe ₃ O ₄ Nanoparticles and Thermosensitive Block Copolymers. Small, 2011, 7, 1683-1689.	10.0	99
28	Magnetoresponsive Smart Capsules Formed with Polyelectrolytes, Lipid Bilayers and Magnetic Nanoparticles. ACS Applied Materials & Interfaces, 2010, 2, 768-773.	8.0	97
29	Flexible thermoelectric foil for wearable energy harvesting. Nano Energy, 2016, 30, 840-845.	16.0	96
30	Electrical and Optical Properties of Radio-Frequency-Sputtered Thin Films of (ZnO)5In2O3. Chemistry of Materials, 1998, 10, 3033-3039.	6.7	91
31	Self-Assembly Patterning of Silica Colloidal Crystals. Langmuir, 2005, 21, 4478-4481.	3.5	90
32	Improvement in thermoelectric properties of (ZnO) ₅ In ₂ O ₃ through partial substitution of yttrium for indium. Journal of Materials Research, 1998, 13, 523-526.	2.6	87
33	Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides. Journal of Electronic Materials, 2011, 40, 1271-1280.	2.2	87
34	Enhanced Seebeck coefficient of quantum-confined electrons in SrTiO3â^•SrTiO.8Nb0.2O3 superlattices. Applied Physics Letters, 2007, 91, .	3.3	85
35	Thermoelectric properties of highly textured NaCo2O4 ceramics processed by the reactive templated grain growth (RTGG) method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 86, 20-25.	3.5	81
36	Site-Selective Deposition and Micropatterning of SrTiO3Thin Film on Self-Assembled Monolayers by the Liquid Phase Deposition Method. Chemistry of Materials, 2002, 14, 5006-5014.	6.7	80

#	Article	IF	CITATIONS
37	Structure and Thermoelectric Transport Properties of Isoelectronically Substituted (ZnO)5In2O3. Journal of Solid State Chemistry, 2000, 150, 221-227.	2.9	79
38	Thermoelectric properties of sintered polycrystalline ZnIn ₂ S ₄ . Journal of Materials Research, 1999, 14, 4176-4181.	2.6	78
39	Selective Deposition of ZnF(OH) on Self-Assembled Monolayers in Znâ^'NH4F Aqueous Solutions for Micropatterning of Zinc Oxide. Langmuir, 2001, 17, 1461-1469.	3.5	77
40	Micropatterning of Copper on a Poly(ethylene terephthalate) Substrate Modified with a Self-Assembled Monolayer. Langmuir, 2006, 22, 332-337.	3.5	77
41	Sub-10 nm strontium titanate nanocubes highly dispersed in non-polar organic solvents. Nanoscale, 2010, 2, 2080.	5.6	77
42	Electrodeposition of CuInS2 from aqueous solution (II) electrodeposition of CuInS2 film. Thin Solid Films, 1996, 286, 151-153.	1.8	74
43	A novel glass-fiber-aided cold-press method for fabrication of n-type Ag ₂ Te nanowires thermoelectric film on flexible copy-paper substrate. Journal of Materials Chemistry A, 2017, 5, 24740-24748.	10.3	73
44	Thermoelectric properties of electron doped SrO(SrTiO3)nâ€^(n=1,2) ceramics. Journal of Applied Physics, 2009, 105, .	2.5	71
45	Tunable UV-Responsive Organicâ~'Inorganic Hybrid Capsules. Chemistry of Materials, 2009, 21, 195-197.	6.7	70
46	Graphene-Based Thermoelectrics. ACS Applied Energy Materials, 2020, 3, 2224-2239.	5.1	70
47	Site-Selective Deposition of Magnetite Particulate Thin Films on Patterned Self-assembled Monolayers. Chemistry of Materials, 2004, 16, 3484-3488.	6.7	69
48	Control over Film Thickness of SnO2Ultrathin Film Selectively Deposited on a Patterned Self-Assembled Monolayer. Langmuir, 2002, 18, 10379-10385.	3.5	68
49	Micropatterning of anatase TiO2 thin films from an aqueous solution by a site-selective immersion method. Journal of Materials Chemistry, 2002, 12, 2643-2647.	6.7	68
50	Body Heat Powers Future Electronic Skins. Joule, 2019, 3, 1399-1403.	24.0	67
51	Reactive Solid-Phase Epitaxial Growth of NaxCoO2(xâ^1⁄4 0.83) via Lateral Diffusion of Na into a Cobalt Oxide Epitaxial Layer. Crystal Growth and Design, 2005, 5, 25-28.	3.0	66
52	Investigation of Apatite Deposition onto Charged Surfaces in Aqueous Solutions Using a Quartz rystal Microbalance. Journal of the American Ceramic Society, 2003, 86, 782-790.	3.8	65
53	Micropatterning of TiO2 Thin Film in an Aqueous Peroxotitanate Solution. Chemistry of Materials, 2004, 16, 1062-1067.	6.7	64
54	Dielectric Mismatch Mediates Carrier Mobility in Organic-Intercalated Layered TiS ₂ . Nano Letters, 2015, 15, 6302-6308.	9.1	62

#	Article	IF	CITATIONS
55	Self-Assembly Patterning of Colloidal Crystals Constructed from Opal Structure or NaCl Structure. Langmuir, 2004, 20, 5588-5592.	3.5	61
56	CO2 gas sensor usingβ-Al2O3 and metal carbonate. Journal of Materials Science Letters, 1986, 5, 285-286.	0.5	60
57	Enhancement of Thermoelectric Figure of Merit for Bi0.5Sb1.5Te3 by Metal Nanoparticle Decoration. Journal of Electronic Materials, 2012, 41, 1165-1169.	2.2	60
58	Electronic conduction in La-based perovskite-type oxides. Science and Technology of Advanced Materials, 2015, 16, 026001.	6.1	58
59	Seedless micropatterning of copper by electroless deposition on self-assembled monolayers. Journal of Materials Chemistry, 2004, 14, 976.	6.7	57
60	The Formation Mechanism of a Textured Ceramic of Thermoelectric [Ca2CoO3]0.62[CoO2] on β-Co(OH)2Templates through in Situ Topotactic Conversion. Journal of the American Chemical Society, 2005, 127, 6367-6373.	13.7	57
61	Site-Selective Deposition and Micropatterning of Visible-Light-Emitting Europium-Doped Yttrium Oxide Thin Film on Self-Assembled Monolayers. Chemistry of Materials, 2007, 19, 1002-1008.	6.7	57
62	Influence of ionic size of rare-earth site on the thermoelectric properties of RCoO3-type perovskite cobalt oxides. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 85, 70-75.	3.5	55
63	Thermoelectric Performance of Yttrium-substituted (ZnO)5In2O3Improved through Ceramic Texturing. Japanese Journal of Applied Physics, 2002, 41, 731-732.	1.5	55
64	Nanoscale stacking faults induced low thermal conductivity in thermoelectric layered metal sulfides. Applied Physics Letters, 2012, 100, .	3.3	54
65	Nano/micro-patterning of anatase TiO2thin film from an aqueous solution by site-selective elimination method. Science and Technology of Advanced Materials, 2003, 4, 461-467.	6.1	52
66	Fabrication of Self-Assembled Monolayers (SAMs) and Inorganic Micropattern on Flexible Polymer Substrate. Langmuir, 2004, 20, 3278-3283.	3.5	52
67	Microstructure-Controlled Deposition of SrTiO3Thin Film on Self-Assembled Monolayers in an Aqueous Solution of (NH4)2TiF6â^'Sr(NO3)2â^'H3BO3. Chemistry of Materials, 2003, 15, 2399-2410.	6.7	50
68	High-temperature thermoelectric properties of Ca0.9â^'xSrxYb0.1MnO3â^'δâ€^(â‰ ¤ â‰ 0 .2). Journal of Applied Physics, 2009, 105, .	2.5	50
69	Wearable and flexible thermoelectrics for energy harvesting. MRS Bulletin, 2018, 43, 193-198.	3.5	48
70	Arrangement of Nanosized Ceramic Particles on Self-Assembled Monolayers. Japanese Journal of Applied Physics, 2000, 39, 4596-4600.	1.5	47
71	Ca-doped RCoO3 (R = Gd, Sm, Nd, Pr) as thermoelectric materials. Journal of Materials Chemistry, 2000, 10, 2007-2009.	6.7	47
72	A novel process to form a silica-like thin layer on polyethylene terephthalate film and its application for gas barrier. Thin Solid Films, 2005, 473, 351-356.	1.8	47

#	Article	IF	CITATIONS
73	Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n (n=1, 2) ceramics. Ceramics International, 2008, 34, 849-852.	4.8	46
74	Grain-boundary grooves and surface diffusion in polycrystalline alumina measured by atomic force microscope. Journal of the European Ceramic Society, 1998, 18, 595-600.	5.7	45
75	Thermoelectric properties of highly textured (ZnO)5In2O3 ceramics. Journal of Materials Chemistry, 2001, 11, 2324-2328.	6.7	45
76	Site-selective deposition and micropatterning of tantalum oxide thin films using a monolayer. Journal of the European Ceramic Society, 2004, 24, 301-307.	5.7	45
77	Effects of Boron, Carbon, and Iron Content on the Stacking Fault Formation during Synthesis of βâ€SiC Particles in the System SiO ₂ â€Câ€H ₂ . Journal of the American Ceramic Society, 1998, 81, 1255-1261.	3.8	45
78	Thermoelectric Flexible Silver Selenide Films: Compositional and Length Optimization. IScience, 2020, 23, 100753.	4.1	42
79	Thermoelectric properties of PbTe thin films prepared by gas evaporation method. Journal of Materials Research, 1999, 14, 209-212.	2.6	40
80	GAS SENSITIVITY OF CuO/ZnO HETERO-CONTACT. Chemistry Letters, 1986, 15, 413-416.	1.3	39
81	Microstructure dependence of mechanical and dielectric strengths—i. porosity. Engineering Fracture Mechanics, 1991, 40, 927-930.	4.3	38
82	The effect of Eu substitution on thermoelectric properties of SrTi0.8Nb0.2O3. Journal of Applied Physics, 2007, 102, 116107.	2.5	38
83	Morphology control of ZnO crystalline particles in aqueous solution. Electrochimica Acta, 2007, 53, 171-174.	5.2	37
84	Preparation of hybrid hollow capsules formed with Fe3O4 and polyelectrolytes via the layer-by-layer assembly and the aqueous solution process. Journal of Colloid and Interface Science, 2010, 341, 64-68.	9.4	37
85	Simulation of Thermoelectric Performance of Bulk SrTiO ₃ with Twoâ€Dimensional Electron Gas Grain Boundaries. Journal of the American Ceramic Society, 2010, 93, 1677-1681.	3.8	36
86	Electronic transport properties of the perovskite-type oxides La1â^'xSrxCoO3±δ. Journal of Materials Chemistry, 2012, 22, 20217.	6.7	36
87	Patterned Adsorption of Protein onto a Carbohydrate Monolayer Immobilized on Si. Langmuir, 2003, 19, 9107-9109.	3.5	35
88	Effects of mesoporous silica addition on thermoelectric properties of Nb-doped SrTiO3. Journal of Alloys and Compounds, 2010, 497, 308-311.	5.5	35
89	Electrodeposition of CuInS2 from aqueous solution Part I. Electrodeposition of Cuî—,S film. Thin Solid Films, 1996, 280, 160-162.	1.8	34
90	Nb-doped grain boundary induced thermoelectric power factor enhancement in La-doped SrTiO3 nanoceramics. Journal of Power Sources, 2013, 241, 255-258.	7.8	34

#	Article	IF	CITATIONS
91	The Effect of Atmosphere and Doping on Electrical Conductivity of CuO. Japanese Journal of Applied Physics, 1992, 31, 2488-2491.	1.5	33
92	Thermoelectric Properties of (ZnO)5In2O3 Thin Films Prepared by r.f. Sputtering Method Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1997, 44, 44-49.	0.2	33
93	Effect of Relative Humidity on Current-Voltage Characteristics of Li-Doped CuO/ZnO Junction. Japanese Journal of Applied Physics, 1983, 22, 1933-1933.	1.5	32
94	Critical thickness for giant thermoelectric Seebeck coefficient of 2DEG confined in SrTiO3/SrTi0.8Nb0.2O3 superlattices. Thin Solid Films, 2008, 516, 5916-5920.	1.8	32
95	Effects of YSZ Additions on Thermoelectric Properties of Nb-Doped Strontium Titanate. Journal of Electronic Materials, 2010, 39, 1777-1781.	2.2	32
96	A Novel Glucose Sensor with a Glucose Oxidase Monolayer Immobilized by the Langmuir–Blodgett Technique. Chemistry Letters, 1988, 17, 1265-1268.	1.3	31
97	Characterization of Prussian Blue analogue: nanocrystalline nickel-iron cyanide. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 49, 89-94.	3.5	31
98	Photoinduced Cleavage of Alkyl Monolayers on Si. Langmuir, 2004, 20, 1517-1520.	3.5	31
99	Synthesis of BaTiO ₃ Nanowires at Low Temperature. Crystal Growth and Design, 2007, 7, 2713-2715.	3.0	31
100	Site-Selective Deposition of In2O3 Using a Self-Assembled Monolayer. Crystal Growth and Design, 2009, 9, 555-561.	3.0	31
101	Effect of Crystal-Axis Orientation on Dielectric Properties of Ceramics Prepared from Fibrous Barium Titanate. Journal of the American Ceramic Society, 1994, 77, 2327-2331.	3.8	30
102	Photoluminescence from ZnO Nanoparticles Embedded in an Amorphous Matrix. Crystal Growth and Design, 2008, 8, 1503-1508.	3.0	30
103	Perovskite solar cell-thermoelectric tandem system with a high efficiency of over 23%. Materials Today Energy, 2019, 12, 363-370.	4.7	30
104	Decomposition Pressure of Co3O4Determined from Electrical Conductivity Measurements. Japanese Journal of Applied Physics, 1981, 20, 445-446.	1.5	29
105	Anisotropic Thermoelectric Properties of Crystal-Axis Oriented Ceramics of Layer-Structured Oxide in the Ca-Co-O System Journal of the Ceramic Society of Japan, 2001, 109, 647-650.	1.3	29
106	Preparation of SrTiO3 thin films by the liquid phase deposition method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99, 290-293.	3.5	29
107	Enhancement of thermoelectric performance in rare earth-doped Sr3Ti2O7 by symmetry restoration of TiO6 octahedra. Journal of Electroceramics, 2010, 24, 76-82.	2.0	29
108	Deposition mechanism of anatase TiO2 from an aqueous solution and its site-selective deposition. Solid State Ionics, 2004, 172, 283-288.	2.7	28

#	Article	IF	CITATIONS
109	Deposition of Î ³ -FeOOH, Fe3O4 and Fe on Pd-catalyzed substrates. Journal of Crystal Growth, 2005, 284, 176-183.	1.5	28
110	Exfoliation of Layers in Na _{<i>x</i>} CoO ₂ . Journal of Nanoscience and Nanotechnology, 2006, 6, 1632-1638.	0.9	28
111	Variable on-demand release function of magnetoresponsive hybrid capsules. Journal of Colloid and Interface Science, 2011, 361, 109-114.	9.4	28
112	Anti-reflective coatings prepared via layer-by-layer assembly of mesoporous silica nanoparticles and polyelectrolytes. Polymer Journal, 2015, 47, 190-194.	2.7	28
113	Review on Wearable Thermoelectric Generators: From Devices to Applications. Energies, 2022, 15, 3375.	3.1	28
114	The Enhanced Penetration of Oxygen along the Grain Boundary in Semiconducting Barium Titanate. Japanese Journal of Applied Physics, 1991, 30, 1252-1255.	1.5	27
115	Ca-doped HoCoO3 as p-type oxide thermoelectric material. Materials Letters, 2001, 48, 225-229.	2.6	27
116	Template-Free Self-Assembly of a Nanoporous TiO2Thin Film. Journal of the American Ceramic Society, 2007, 90, 831-837.	3.8	27
117	Experimental characterization of the electronic structure of anatase TiO2: Thermopower modulation. Applied Physics Letters, 2010, 97, 172112.	3.3	27
118	Nanocomposites of CuO/SWCNT: Promising thermoelectric materials for mid-temperature thermoelectric generators. Journal of the European Ceramic Society, 2019, 39, 3307-3314.	5.7	27
119	Improvement in Thermoelectric Characteristics of n-type Iron Disilicide by Local Composition Modification. Journal of the American Ceramic Society, 1995, 78, 1089-1092.	3.8	26
120	Realizing a High <i>ZT</i> of 1.6 in N-Type Mg ₃ Sb ₂ -Based Zintl Compounds through Mn and Se Codoping. ACS Applied Materials & Interfaces, 2020, 12, 21799-21807.	8.0	26
121	Room Temperature CVD of TiO ₂ Thin Films and Their Electronic Properties. Science of Advanced Materials, 2009, 1, 138-143.	0.7	26
122	Site-Selective Deposition and Micropatterning of Zirconia Thin Films on Templates of Self-Assembled Monolayers. Journal of the Ceramic Society of Japan, 2002, 110, 379-385.	1.3	25
123	Cationic Silver Nanoparticles Dispersed in Water Prepared from Insoluble Salts. Chemistry Letters, 2003, 32, 194-195.	1.3	25
124	Thermoelectric performance enhancement of (BiS)1.2(TiS2)2 misfit layer sulfide by chromium doping. Journal of Advanced Ceramics, 2013, 2, 42-48.	17.4	25
125	Statistical Analysis of Dielectric Strength of BaTiO3Ceramic Films. Japanese Journal of Applied Physics, 1980, 19, 867-871.	1.5	24
126	Formation and Characterization of Indium Hydroxide Films. Journal of the Ceramic Society of Japan, 1998. 106. 381-384.	1.3	24

#	Article	IF	CITATIONS
127	Effect of Postdeposition Annealing on Luminescence from Zinc Oxide Patterns Prepared by the Electroless Deposition Process. Journal of the Electrochemical Society, 2004, 151, H169.	2.9	24
128	Solution synthesis and growth mechanism of SrTiO ₃ mesocrystals. CrystEngComm, 2013, 15, 679-685.	2.6	24
129	Enhancement of thermoelectric properties by lattice softening and energy band gap control in Te-deficient InTe1â^' <i>δ</i> . AIP Advances, 2018, 8, .	1.3	24
130	Comparison of Mechanical and Dielectric Strength Distributions for Variously Surface-Finished Titanium Dioxide Ceramics. Journal of the American Ceramic Society, 1989, 72, 1373-1376.	3.8	23
131	Crystallization of Hydroxyapatite under Langmuir Monolayers. Journal of the Ceramic Society of Japan, 1996, 104, 291-295.	1.3	23
132	Change in the Oxidation State of the Adsorbed Oxygen Equilibrated at 25°C on ZnO Surface during Room Temperature Annealing after Rapid Quenching. Japanese Journal of Applied Physics, 1999, 38, 1534-1538.	1.5	23
133	Nano/Micro Patterning of Inorganic Thin Films. Bulletin of the Chemical Society of Japan, 2008, 81, 1337-1376.	3.2	23
134	Titanium sulphene: two-dimensional confinement of electrons and phonons giving rise to improved thermoelectric performance. Physical Chemistry Chemical Physics, 2012, 14, 15641.	2.8	23
135	Micropatterning of lanthanum-based oxide thin film on self-assembled monolayers. Journal of Colloid and Interface Science, 2004, 274, 392-397.	9.4	22
136	Anisotropic carrier transport properties in layered cobaltate epitaxial films grown by reactive solid-phase epitaxy. Applied Physics Letters, 2009, 94, .	3.3	22
137	Thermoelectric Performance of SrTiO ₃ Enhanced by Nanostructuring—Self-Assembled Particulate Film of Nanocubes. ACS Applied Materials & Interfaces, 2013, 5, 10933-10937.	8.0	22
138	Doubling the <i>ZT</i> record of TiS ₂ -based thermoelectrics by incorporation of ionized impurity scattering. Journal of Materials Chemistry C, 2018, 6, 9345-9353.	5.5	22
139	Realization of an Ultrahigh Power Factor and Enhanced Thermoelectric Performance in TiS ₂ via Microstructural Texture Engineering. ACS Applied Materials & Interfaces, 2020, 12, 41687-41695.	8.0	22
140	Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution. Langmuir, 2004, 20, 3188-94.	3.5	22
141	Synthesis of an oxygen nonstoichiometric Sr6Co5O15 phase. Materials Research Bulletin, 2006, 41, 732-739.	5.2	20
142	Thermoelectric Properties of Ruddlesden?Popper Phase n-Type Semiconducting Oxides: La-, Nd-, and Nb-Doped Sr3Ti2O7. International Journal of Applied Ceramic Technology, 2007, 4, 326-331.	2.1	20
143	X-ray absorption study on LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries. Ceramics International, 2008, 34, 859-862.	4.8	20
144	Origin of high electrical conductivity in alkaline-earth doped LaCoO3. Journal of Materials Chemistry, 2012, 22, 11003.	6.7	20

#	Article	IF	CITATIONS
145	Growth Behavior of TiO2 Particles via the Liquid Phase Deposition Process. Journal of the Ceramic Society of Japan, 2007, 115, 831-834.	1.1	19
146	Templated nucleation of hybrid iron oxide nanoparticles on polysaccharide nanogels. Colloid and Polymer Science, 2013, 291, 1375-1380.	2.1	19
147	Enhanced thermoelectric performance of xMoS2–TiS2 nanocomposites. Journal of Alloys and Compounds, 2016, 666, 346-351.	5.5	19
148	Fibrous and Porous Microstructure Formation in 6Hâ€ 5 iC by Anodization in HF Solution. Journal of the Electrochemical Society, 1998, 145, 2456-2460.	2.9	18
149	Electric-Field Modulation of Thermopower for the KTaO ₃ Field-Effect Transistors. Applied Physics Express, 2009, 2, 121103.	2.4	18
150	LaCo _{1–<i>x</i>} Ni _{<i>x</i>} O ₃ with Improved Electrical Conductivity. Inorganic Chemistry, 2012, 51, 9259-9264.	4.0	18
151	Influence of excess SrO on the thermoelectric properties of heavily doped SrTiO3 ceramics. Applied Physics Letters, 2013, 102, .	3.3	18
152	Enhancement of Electrical Conduction in ZnO by CoO Doping. Journal of the American Ceramic Society, 1982, 65, c93-c94.	3.8	17
153	Electrical and Thermal Transport Properties in Layer-Structured (ZnO)mIn2O3(m=5 and 9) Ceramics. Japanese Journal of Applied Physics, 2002, 41, 6430-6435.	1.5	17
154	Synthesis of Acicular BaTiO3 Particles using Acicular Barium Oxalates. Crystal Growth and Design, 2008, 8, 169-171.	3.0	17
155	Effects of Transition Metal Substitution on the Thermoelectric Properties of Metallic (BiS)1.2(TiS2)2 Misfit Layer Sulfide. Journal of Electronic Materials, 2014, 43, 1870-1874.	2.2	17
156	Reaction Sintering of Polycarbosilane-Impregnated Compact of Silicon Carbide Hollow Particles and the Resultant Thermoelectric Properties. Journal of the American Ceramic Society, 1991, 74, 2922-2924.	3.8	16
157	Self-assembly of Particle Wires in 2-D Ordered Array. Chemistry Letters, 2003, 32, 1016-1017.	1.3	16
158	Atomic scale flattening of organosilane self-assembled monolayer and patterned tin hydroxide thin films. Journal of the European Ceramic Society, 2004, 24, 427-434.	5.7	16
159	Epitaxial Film Growth of Li <i>_x</i> CoO ₂ (0.6 ≤i>x ≤0.9) via Topotactic Ion Exchange of Na _{0.8} CoO ₂ . Crystal Growth and Design, 2008, 8, 755-758.	3.0	16
160	Direct observations of Ca ordering in Ca0.33CoO2 thin films with different superstructures. Applied Physics Letters, 2008, 93, .	3.3	16
161	Self-originating two-step synthesis of core–shell structured La-doped SrTiO ₃ nanocubes. Journal of Asian Ceramic Societies, 2013, 1, 35-40.	2.3	16
162	A highly-efficient concentrated perovskite solar cell-thermoelectric generator tandem system. Journal of Energy Chemistry, 2021, 59, 730-735.	12.9	16

#	Article	IF	CITATIONS
163	Simultaneous Measurement of Electrical Conductivity and the Amount of Adsorbed Oxygen in Porous ZnO. Bulletin of the Chemical Society of Japan, 1988, 61, 1979-1983.	3.2	15
164	PZT-polymer piezoelectric composites: A design for an acceleration sensor. Sensors and Actuators A: Physical, 1993, 36, 121-126.	4.1	15
165	Kinetics and mechanism of stacking fault annihilation and grain growth in porous ceramics of β–SiC. Journal of Materials Research, 1993, 8, 1644-1650.	2.6	15
166	Enhancement of Seebeck coefficient for SrO(SrTiO3)2 by Sm substitution: Crystal symmetry restoration of distorted TiO6 octahedra. Applied Physics Letters, 2007, 91, 242102.	3.3	15
167	The effect of morphological modification on the thermoelectric properties of ZnO nanomaterials. Ceramics International, 2021, 47, 6169-6178.	4.8	15
168	Effect of Particle Size on Electrode Paste Properties and Sintering Properties of Ni Powder Synthesized by Wet Chemical Process Journal of the Ceramic Society of Japan, 2000, 108, 769-773.	1.3	14
169	Special Issue Ceramics Integration. Characterization of Zinc Oxide Micropatterns Deposited on Self-Assembled Monolayer Template Journal of the Ceramic Society of Japan, 2002, 110, 386-390.	1.3	14
170	Pattern-deposition of light-emitting ZnO particulate film through biomimetic process using self-assembled monolayer template. Microelectronics Journal, 2004, 35, 349-352.	2.0	14
171	Epitaxial Film Growth and Superconducting Behavior of Sodiumâ^'Cobalt Oxyhydrate, NaxCoO2·yH2O (xâ^1⁄4) Tj	ETOq1 1	0.784314 g
172	SrxLa1â^'xMnO3: n-type oxides with phase stability at high temperatures in air. Journal of Materials Chemistry A, 2013, 1, 3249.	10.3	14
173	Enhanced thermoelectric performance in polymorphic heavily Co-doped Cu ₂ SnS ₃ through carrier compensation by Sb substitution. Science and Technology of Advanced Materials, 2021, 22, 363-372.	6.1	14
174	PZT-polymer composites fabricated with YAG laser cutter. Sensors and Actuators A: Physical, 1994, 40, 187-190.	4.1	13
175	Influence of BaTiO3 Nano Particle on Paste and Sintering Properties of Ni Internal Electrode Films by MLCC. Journal of the Ceramic Society of Japan, 2003, 111, 282-284.	1.3	12
176	Thermoelectric Properties of (ZnO)5In2O3Single Crystal Grown by a Flux Method. Japanese Journal of Applied Physics, 2004, 43, L194-L196.	1.5	12
177	Grain-Size-Dependent Thermoelectric Properties of SrTiO3 3D Superlattice Ceramics. Journal of Electronic Materials, 2013, 42, 1568-1572.	2.2	12
178	Enhanced thermoelectric performance of n-type Bi2Te2.7Se0.3 via a simple liquid-assisted shear exfoliation. Journal of Materials Science and Technology, 2022, 117, 251-258.	10.7	12
179	Preparation of Semiconducting Barium Titanate by Excimer Laser Irradiation. Journal of the American Ceramic Society, 1989, 72, 2367-2368.	3.8	11
180	Effect of Amount of Added BaTiO3 Powders on Sintering Properties and Electrical Properties of Ni Electrode Films Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2001, 48, 392-396.	0.2	11

#	Article	IF	CITATIONS
181	Electric field modulation of thermopower for transparent amorphous oxide thin film transistors. Applied Physics Letters, 2010, 97, .	3.3	11
182	Effective dopants for Cul single nanocrystals as a promising room temperature thermoelectric material. Ceramics International, 2020, 46, 27244-27253.	4.8	11
183	Localized vibration and avoided crossing in SrTi ₁₁ O ₂₀ for oxide thermoelectrics with intrinsically low thermal conductivity. Journal of Materials Chemistry A, 2021, 9, 11674-11682.	10.3	11
184	Electrical Conduction in Co1-chiMgchiO. Journal of the American Ceramic Society, 1983, 66, 42-45.	3.8	10
185	Enhancement of Ionic Conductivity in the SrCl2 â€â€‰Al2 O 3 System. Journal of the Electrochen 1986, 133, 1497-1500.	nical Socie	ety, ₁₀
186	Vapor-Phase Growth of Transparent Zinc Oxide Ceramics with c-Axis Orientation. Journal of the American Ceramic Society, 1991, 74, 232-233.	3.8	10
187	Paste Properties and Pulverization of Pd Agglomerate Particles Journal of the Ceramic Society of Japan, 2000, 108, 661-665.	1.3	10
188	Eftects of Particle Size on Sintering and Electrical Characteristics of Ni Powder for Internal Electrode of MLC Journal of the Ceramic Society of Japan, 2001, 109, 661-666.	1.3	10
189	Interfacial Observation of an Alkylsilane Self-Assembled Monolayer on Hydrogen-Terminated Si. Langmuir, 2004, 20, 8942-8946.	3.5	10
190	Hydrothermal Synthesis of SrTiO ₃ Nanoplates Through Epitaxial Self-Assembly of Nanocubes. Journal of Nanoscience and Nanotechnology, 2012, 12, 2685-2690.	0.9	10
191	High thermoelectric performance of Co-doped Cu2SnS3-attapulgite nano-composites achieved by synergetic manipulation of electrical and thermal transport properties. Journal of Alloys and Compounds, 2021, 887, 161338.	5.5	10
192	Interdiffusion of Zinc Ions in Aluminium Cobalt(II) Oxide and Aluminium Nickel(II) Oxide. Bulletin of the Chemical Society of Japan, 1979, 52, 386-389.	3.2	9
193	C-2 Epimerization of Disaccharides by Nickel(II)–Diamine Complex. A New Synthesis of (1→6)-Linked Disaccharides Having Mannose as a Reducing Unit. Chemistry Letters, 1988, 17, 327-330.	1.3	9
194	Dependence of Sintered Electrode Ni Paste on Dispersed Ni Paste and Ni Powder Properties Journal of the Ceramic Society of Japan, 2001, 109, 447-452.	1.3	9
195	Preparation and Thermoelectric Properties of Na <i>_x</i> CoO ₂ /Co ₃ O ₄ Layered Nano-Composite. Materials Transactions, 2005, 46, 1453-1455.	1.2	9
196	Distinct anisotropy and a high power factor in highly textured TiS ₂ ceramics <i>via</i> mechanical exfoliation. Chemical Communications, 2020, 56, 5961-5964.	4.1	9
197	Numerical Estimation of the Dependence of Dielectric Constant of BaTiO3Thick Films on Grain-Size Distribution. Japanese Journal of Applied Physics, 1981, 20, 1833-1840.	1.5	8
198	Thermoelectric Properties of Porous β-SiC Fabricated from Rice Hull Ash. Journal of the Ceramic Society of Japan, 1993, 101, 814-818.	1.3	8

#	Article	IF	CITATIONS
199	Dependence of Electrode Ni Paste Properties on the Amount of Added BaTiO3 Powder Journal of the Ceramic Society of Japan, 2001, 109, 351-354.	1.3	8
200	A Novel Approach to Fabricate Hydroxyapatite Coating on Titanium Substrate in an Aqueous Solution Journal of the Ceramic Society of Japan, 2001, 109, 676-680.	1.3	8
201	Influences of Growth Conditions to Morphology of ZnO Thin Films Electrolessly Deposited on Pd Catalyst. Journal of the Ceramic Society of Japan, 2007, 115, 850-855.	1.1	8
202	Thermoelectric Performance of Epitaxial Thin Films of Layered Cobalt Oxides Grown by Reactive Solid-Phase Epitaxy with Topotactic Ion-Exchange Methods. International Journal of Applied Ceramic Technology, 2007, 4, 308-317.	2.1	8
203	Enzyme-Assisted Synthesis of Titania under Ambient Conditions. Journal of the American Ceramic Society, 2009, 92, S181-S184.	3.8	8
204	Hexagonal Symmetry Radial Whiskers of ZnO Crystallized in Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2009, 9, 522-526.	0.9	8
205	Preparation of hollow titania and strontium titanate spheres using sol–gel derived silica gel particles as templates. Journal of Sol-Gel Science and Technology, 2012, 63, 366-372.	2.4	8
206	Synthesis of piezoelectric PbTiO3 fibres. Journal of Materials Science Letters, 1989, 8, 805-807.	0.5	7
207	Hydrothermal Synthesis of Fibrous Lead Titanate Powder. Journal of the Ceramic Society of Japan, 1994, 102, 88-92.	1.3	7
208	Relationship between Thermoelectric Properties and Microstructure on n-Type (Bi ₂ Te ₃) _{0.95} (Bi ₂ Se ₃) _{0.05} Ceramics Prepared from Mixed. Journal of the Ceramic Society of Japan, 1995, 103, 917-922.	1.3	7
209	Thermoelectric Properties of p-Type Bismuth Telluride Material Fabricated by Plasma Sintering of Metal Powder Mixture. Journal of the Ceramic Society of Japan, 1996, 104, 837-843.	1.3	7
210	Microstructure evolution of Ca _{0.33} CoO ₂ thin films investigated by high-angle annular dark-field scanning transmissionelectron microscopy. Journal of Materials Research, 2009, 24, 279-287.	2.6	7
211	Preparation of Hollow TiO ₂ Spheres of the Desired Polymorphs by Layerâ€byâ€Layer Assembly of a Waterâ€Soluble Titanium Complex and Hydrothermal Treatment. European Journal of Inorganic Chemistry, 2012, 2012, 3267-3272.	2.0	7
212	Glass-like thermal conductivity of Nd2/3â ^{~,} xLi3xTiO3 bulk ceramics with nanochessboard superlattice structure. Materials Letters, 2013, 97, 191-194.	2.6	7
213	Thermoelectric properties of oil fly ash-derived carbon nanotubes coated with polypyrrole. Journal of Applied Physics, 2020, 128, 235104.	2.5	7
214	The Thickness-Dependence of Dielectric and Physical Properties of BaTiO3Ceramic Thick Films. Japanese Journal of Applied Physics, 1983, 22, 580-584.	1.5	6
215	Thermoelectric Properties of p-Type Iron Disilicide Ceramics Fabricated from the Composite Powder Prepared by Precipitation Method. Journal of the Ceramic Society of Japan, 1995, 103, 670-675.	1.3	6
	Relationship between Thermoelectric Properties and Microstructure on p-Type		

(Bi<sub>2</sub>Te<sub>3</sub>)<sub>0.25</sub>(Sb<sub>2</sub>Te&l\$;sub&g\$;3</sub&g\$;0.25</sub&g\$;2</sub&g\$;7e&l\$;sub&g\$;3</sub&g\$;5</sub&g\$;2</sub&g\$;2</sub&g\$;7e&l\$;sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;1&l\$;sub&g\$;2</sub&g\$;2</sub&g\$;2</sub&g\$;2</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$;3</sub&g\$

#	Article	IF	CITATIONS
217	Preparation of layered double hydroxide coating films via the aqueous solution process using binary oxide gel films as precursor. Journal of the Ceramic Society of Japan, 2009, 117, 356-358.	1.1	6
218	Preparation of pH-Responsive Hollow Capsules via Layer-by-Layer Assembly of Exfoliated Layered Double Hydroxide Nanosheets and Polyelectrolytes. Journal of Nanoscience and Nanotechnology, 2018, 18, 110-115.	0.9	6
219	Microstructure and Thermoelectric Properties of p-Type Bismuth Telluride Prepared by HIPping of Metal Powder Mixture. Journal of the Ceramic Society of Japan, 1995, 103, 797-803.	1.3	5
220	Relationship between Thermoelectric Properties and Formation of Microstructure, and Compressive Strength and Grain Size of Bi-Te Materials. Journal of the Ceramic Society of Japan, 1996, 104, 109-115.	1.3	5
221	Preparation and Characterization of Polypeptide-Stabilized Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6, 1649-1654.	0.9	5
222	Resistivity change ofγ-MnO2 in a H2/Ar mixed gas atmosphere. Journal of Materials Science Letters, 1988, 7, 331-334.	0.5	4
223	Relationship between Thermoelectric Properties and Microstructure on p-Type (Bi ₂ Te ₃) _{0.25} (Sb ₂ T System Using Milled Powder. Journal of the Ceramic Society of Japan, 1995, 103, 1182-1187.	e&l\$;sub&	gt43
224	Fabrication and Evaluation of Ni-MLCC Used of New BaTiO3 Resinate. Journal of the Ceramic Society of Japan, 2004, 112, 458-461.	1.3	4
225	Patterning of ZrO ₂ Precursor Through a Gas-Generated Self-Assembly Route. Journal of Nanoscience and Nanotechnology, 2006, 6, 1842-1846.	0.9	4
226	Fusion and Growth Behavior of Gold Nanoparticles Stabilized by Allylmercaptane. Macromolecular Symposia, 2008, 270, 82-87.	0.7	4
227	Morphology control of anisotropic BaTiO3 and BaTiOF4 using organic–inorganic interaction. Journal of Crystal Growth, 2009, 311, 589-592.	1.5	4
228	A single crystalline strontium titanate thin film transistor. Journal of Applied Physics, 2010, 107, .	2.5	4
229	High thermoelectric performance in flexible TiS ₂ /organic superlattices. Journal of the Ceramic Society of Japan, 2022, 130, 211-218.	1.1	4
230	Electrochemical redox behavior of nickel-iron cyanide film deposited onto indium tin oxide substrate. Thin Solid Films, 1997, 292, 227-231.	1.8	3
231	Influence of Preparation Methods of Ni Powder and Amount of BaTiO3 Additive on Sintering Properties of Ni Internal Electrode Films Journal of the Ceramic Society of Japan, 2002, 110, 676-680.	1.3	3
232	Advances in nature-guided materials processing. Science and Technology of Advanced Materials, 2003, 4, 421-433.	6.1	3
233	Dielectric Characteristics of SrTiO ₃ Precursor Thin Film Prepared on Self-Assembled Monolayers by the Liquid Phase Deposition Method. Key Engineering Materials, 2003, 248, 73-76.	0.4	3
234	Low Dimensional Particle Patterning. Journal of Dispersion Science and Technology, 2005, 25, 503-511.	2.4	3

#	Article	IF	CITATIONS
235	Electric field thermopower modulation analysis of an interfacial conducting layer formed between Y2O3 and rutile TiO2. Journal of Applied Physics, 2011, 110, 063719.	2.5	3
236	Self-Assembled-Monolayers (SAMs) Modified Template Synthesis and Characterization of SrTiO ₃ Nanotube Arrays. Journal of Nanoscience and Nanotechnology, 2012, 12, 2054-2058.	0.9	3
237	Liquid Phase Morphology Control of ZnO Nanowires, Ellipse Particles, Hexagonal Rods, and Particle in Aqueous Solutions. ISRN Nanotechnology, 2012, 2012, 1-6.	1.3	3
238	High-temperature defect structure and electrical conduction in Ni1â^'xMgxO. Journal of Solid State Chemistry, 1984, 55, 150-157.	2.9	2
239	Initial Nucleation Process of Hydroxyapatite on Organosilane Self-Assembled Monolayers Journal of the Ceramic Society of Japan, 2000, 108, 714-720.	1.3	2
240	Preparation of BaTiO3 ultrafine particles by micro-emulsion charring method. Journal of Materials Science: Materials in Electronics, 2000, 11, 139-143.	2.2	2
241	Effect of Sintering Properties on Large Particle Size of Ni Power for MLCs with Ni Internal Electrode Journal of the Ceramic Society of Japan, 2001, 109, 963-967.	1.3	2
242	Effect of Sintering Control on Shrinkage Suppressor of Ni Internal Electrode Paste Film by MLC Journal of the Ceramic Society of Japan, 2002, 110, 329-332.	1.3	2
243	Origin of Giant Seebeck Coefficient for High Density 2DEGs Confined in the SrTiO3/SrTi0.8Nb0.2O3 Superlattices. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	2
244	Positioning of cationic silver nanoparticle by using AFM lithography and electrostatic interaction. Applied Surface Science, 2007, 254, 621-626.	6.1	2
245	Vapor-Growth of Bismuth on Oriented Organic Films Hyomen Kagaku, 1996, 17, 31-37.	0.0	2
246	PREPARATION OF THIN SOLID FILMS IN THE Co–O SYSTEM BY REACTIVE RF SPUTTERING. Chemistry Letters, 1983, 12, 189-192.	1.3	1
247	TEM Observations of the Grain Boundaries in a Semiconducting Barium Titanate Thick Film. Japanese Journal of Applied Physics, 1984, 23, L305-L307.	1.5	1
248	CRYSTAL GROWTH OF HYDROXYAPATITE UNDER LANGMUIR MONOLAYERS. Phosphorus Research Bulletin, 1996, 6, 39-42.	0.6	1
249	Influence of Amount of BaTiO3 Organometallic-Resinate Additive on Paste and Sintering Properties of Ni Internal Electrode Films. Journal of the Ceramic Society of Japan, 2003, 111, 600-603.	1.3	1
250	Thermoelectric properties of Nb-doped (Nd0.55Li0.36)TiO3bulk ceramics with superlattice structure. Journal of Alloys and Compounds, 2016, 664, 487-491.	5.5	1
251	CO Shift Reaction on the Potassium Polyaluminate Catalyst. Bulletin of the Chemical Society of Japan, 1980, 53, 3361-3362.	3.2	0
252	Effect of Crystal-Axis Orientation on Resonance Mode of BaTiO3 Ceramics. Journal of the American Ceramic Society, 1992, 75, 1674-1677.	3.8	0

#	Article	IF	CITATIONS
253	Thermoelectric Properties and <i>I-V</i> Characteristics of Iron-Silicon Oxidized Layer/Iron Disilicide Material. Journal of the Ceramic Society of Japan, 1995, 103, 1270-1274.	1.3	Ο
254	Microstructural Characterization of ZnO Varistors Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1995, 42, 587-591.	0.2	0
255	Preparation of Metallic Crystals by Langmuir-Blodgett Technique. Molecular Crystals and Liquid Crystals, 1997, 295, 129-132.	0.3	Ο
256	Preparation of BaTiO3 Ultrafine Particles by Micro-Emulsion Charring Method Journal of the Ceramic Society of Japan, 1999, 107, 864-867.	1.3	0
257	Low Temperature Synthesis of Electrode Films from Silver-Palladium Alloy Powders for Multilayer Ceramic Devices Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2000, 47, 844-852.	0.2	0
258	Interfacial Reaction-Controlled Deposition and Micropatterning of Oxide Thin Films for Gate Dielectrics. Key Engineering Materials, 2003, 253, 139-150.	0.4	0
259	Quantum Size Effect of 2DEG Confined Within BaTiO3/SrTiO3:Nb Superlattices. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	Ο
260	Review of Oxide Thermoelectric Materials and Devices Originated. Journal of the Institute of Electrical Engineers of Japan, 2008, 128, 282-283.	0.0	0
261	Ca-Doping and Thermoelectric Properties of CaxCoO2 Epitaxial Films. Ceramic Engineering and Science Proceedings, 0, , 93-105.	0.1	Ο
262	New Method for the Preparation of Ceramic Thin Films Using Surfactant Templates. Journal of Japan Oil Chemists' Society, 2000, 49, 1253-1259,1303.	0.3	0
263	Evaluation of Ni-MLCC and Fabrication of Ni Thin Electrode by used Ni Nano powder. Transactions of the Materials Research Society of Japan, 2007, 32, 851-854.	0.2	Ο
264	Electron Microscopic Studies on Grain Boundaries in Ceramics. Hyomen Kagaku, 1984, 5, 61-62.	0.0	0
265	Interface-associated aspects in ceramic materials Hyomen Kagaku, 1989, 10, 818-823.	0.0	0
266	Thermoelectric Performance of Doped SrO(SrTiO3)n (n = 1, 2) Ruddlesden-Popper Phases. , 0, , 193-202.		0