
## Fengwei Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6783694/publications.pdf Version: 2024-02-01



FENCWEL RAL

| #  | Article                                                                                                                                                                                                                               | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dicer Deletion Leads to Different Antiviral Responses in Mouse Embryonic Stem Cells. FASEB Journal, 2021, 35, .                                                                                                                       | 0.5 | 0         |
| 2  | Murine Trophoblast Stem Cells and Their Differentiated Cells Attenuate Zika Virus In Vitro by<br>Reducing Glycosylation of the Viral Envelope Protein. Cells, 2021, 10, 3085.                                                         | 4.1 | 2         |
| 3  | <i>In vitro and in vivo</i> efficacy of antiâ€chikungunya virus monoclonal antibodies produced in<br>wildâ€type and glycoengineered <i>Nicotiana benthamiana</i> plants. Plant Biotechnology Journal, 2020,<br>18, 266-273.           | 8.3 | 46        |
| 4  | Tumor Necrosis Factor-Alpha Signaling May Contribute to Chronic West Nile Virus Post-infectious<br>Proinflammatory State. Frontiers in Medicine, 2020, 7, 164.                                                                        | 2.6 | 21        |
| 5  | Zika virus infection causes widespread damage to the inner ear. Hearing Research, 2020, 395, 108000.                                                                                                                                  | 2.0 | 11        |
| 6  | Mouse Trophoblasts Can Provide Antiviral Protection to Embryonic Stem Cells. FASEB Journal, 2020, 34, 1-1.                                                                                                                            | 0.5 | 0         |
| 7  | Current Understanding of West Nile Virus Clinical Manifestations, Immune Responses, Neuroinvasion, and Immunotherapeutic Implications. Pathogens, 2019, 8, 193.                                                                       | 2.8 | 52        |
| 8  | Differential Expression of Genes Related to Innate Immune Responses in Ex Vivo Spinal Cord and<br>Cerebellar Slice Cultures Infected with West Nile Virus. Brain Sciences, 2019, 9, 1.                                                | 2.3 | 43        |
| 9  | Linking Water Quality to Aedes aegypti and Zika in Flood-Prone Neighborhoods. EcoHealth, 2019, 16,<br>191-209.                                                                                                                        | 2.0 | 8         |
| 10 | A plant-produced vaccine protects mice against lethal West Nile virus infection without enhancing<br>Zika or dengue virus infectivity. Vaccine, 2018, 36, 1846-1852.                                                                  | 3.8 | 43        |
| 11 | Congenital Zika Virus Infection in Immunocompetent Mice Causes Postnatal Growth Impediment and Neurobehavioral Deficits. Frontiers in Microbiology, 2018, 9, 2028.                                                                    | 3.5 | 30        |
| 12 | Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells<br>and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS<br>Pathogens, 2018, 14, e1006764. | 4.7 | 145       |
| 13 | The Molecular Basis for the Lack of Inflammatory Responses in Mouse Embryonic Stem Cells and Their<br>Differentiated Cells. Journal of Immunology, 2017, 198, 2147-2155.                                                              | 0.8 | 25        |
| 14 | Osteopontin facilitates West Nile virus neuroinvasion via neutrophil "Trojan horse―transport.<br>Scientific Reports, 2017, 7, 4722.                                                                                                   | 3.3 | 67        |
| 15 | Interleukin-17A Promotes CD8 <sup>+</sup> T Cell Cytotoxicity To Facilitate West Nile Virus Clearance.<br>Journal of Virology, 2017, 91, .                                                                                            | 3.4 | 46        |
| 16 | Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent<br>enhancement of infection activity. Journal of General Virology, 2016, 97, 3280-3290.                                                     | 2.9 | 53        |
| 17 | An Overview of Current Approaches Toward the Treatment and Prevention of West Nile Virus<br>Infection. Methods in Molecular Biology, 2016, 1435, 249-291.                                                                             | 0.9 | 12        |
| 18 | An ultrasensitive electrogenerated chemiluminescence-based immunoassay for specific detection of<br>Zika virus. Scientific Reports, 2016, 6, 32227.                                                                                   | 3.3 | 40        |

Fengwei Bai

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | TLR8 Couples SOCS-1 and Restrains TLR7-Mediated Antiviral Immunity, Exacerbating West Nile Virus Infection in Mice. Journal of Immunology, 2016, 197, 4425-4435.                                                                           | 0.8 | 28        |
| 20 | Transcriptome profiling of the microalga Chlorella pyrenoidosa in response to different carbon dioxide concentrations. Marine Genomics, 2016, 29, 81-87.                                                                                   | 1.1 | 10        |
| 21 | Development of Antiviral Innate Immunity During In Vitro Differentiation of Mouse Embryonic Stem<br>Cells. Stem Cells and Development, 2016, 25, 648-659.                                                                                  | 2.1 | 25        |
| 22 | Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine. Stem Cells, 2015, 33, 3165-3173.                                                                               | 3.2 | 34        |
| 23 | Vector-Borne Viral Diseases. BioMed Research International, 2015, 2015, 1-1.                                                                                                                                                               | 1.9 | 0         |
| 24 | Bioconjugated Gold Nanoparticle Based SERS Probe for Ultrasensitive Identification of<br>Mosquito-Borne Viruses Using Raman Fingerprinting. Journal of Physical Chemistry C, 2015, 119,<br>23669-23675.                                    | 3.1 | 65        |
| 25 | Loss of Glycosaminoglycan Receptor Binding after Mosquito Cell Passage Reduces Chikungunya Virus<br>Infectivity. PLoS Neglected Tropical Diseases, 2015, 9, e0004139.                                                                      | 3.0 | 34        |
| 26 | Effects of UV Inactivated West Nile Particles on Astrocytic Morphology and Expression of Marker<br>Proteins. FASEB Journal, 2015, 29, 839.1.                                                                                               | 0.5 | 0         |
| 27 | Gold nanoparticle-mediated delivery of siRNA: a promising strategy in the treatment of mosquito-borne viral diseases?. Future Virology, 2014, 9, 931-934.                                                                                  | 1.8 | 2         |
| 28 | Antiviral Responses in Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2014, 289, 25186-25198.                                                                                                                                | 3.4 | 31        |
| 29 | Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro. Journal of General Virology, 2014, 95, 1712-1722.                                                                            | 2.9 | 88        |
| 30 | Highly potent anti-proliferative effects of a gallium(III) complex with 7-chloroquinoline<br>thiosemicarbazone as a ligand: Synthesis, cytotoxic and antimalarial evaluation. European Journal of<br>Medicinal Chemistry, 2014, 86, 81-86. | 5.5 | 32        |
| 31 | Preliminary anti-cancer photodynamic therapeutic in vitro studies with mixed-metal binuclear<br>ruthenium(ii)–vanadium(iv) complexes. Dalton Transactions, 2013, 42, 11881.                                                                | 3.3 | 43        |
| 32 | Neutrophil in viral infections, friend or foe?. Virus Research, 2013, 171, 1-7.                                                                                                                                                            | 2.2 | 114       |
| 33 | Mouse Embryonic Stem Cells Are Deficient in Type I Interferon Expression in Response to Viral<br>Infections and Double-stranded RNA. Journal of Biological Chemistry, 2013, 288, 15926-15936.                                              | 3.4 | 55        |
| 34 | A Novel Allosteric Inhibitor of Macrophage Migration Inhibitory Factor (MIF). Journal of Biological<br>Chemistry, 2012, 287, 30653-30663.                                                                                                  | 3.4 | 55        |
| 35 | IL-22 Signaling Contributes to West Nile Encephalitis Pathogenesis. PLoS ONE, 2012, 7, e44153.                                                                                                                                             | 2.5 | 65        |
| 36 | A Paradoxical Role for Neutrophils in the Pathogenesis of West Nile Virus. Journal of Infectious<br>Diseases, 2010, 202, 1804-1812.                                                                                                        | 4.0 | 156       |

Fengwei Bai

| #  | Article                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | IL-10 Signaling Blockade Controls Murine West Nile Virus Infection. PLoS Pathogens, 2009, 5, e1000610.                                                         | 4.7  | 79        |
| 38 | Effective siRNA targeting of the 3′ untranslated region of the West Nile virus genome. Antiviral Research, 2009, 82, 166-168.                                  | 4.1  | 26        |
| 39 | Toll-like Receptor 7 Mitigates Lethal West Nile Encephalitis via Interleukin 23-Dependent Immune Cell<br>Infiltration and Homing. Immunity, 2009, 30, 242-253. | 14.3 | 180       |
| 40 | Human innate immunosenescence: causes and consequences for immunity in old age. Trends in Immunology, 2009, 30, 325-333.                                       | 6.8  | 413       |
| 41 | Matrix Metalloproteinase 9 Facilitates West Nile Virus Entry into the Brain. Journal of Virology, 2008, 82, 8978-8985.                                         | 3.4  | 151       |
| 42 | ICAM-1 Participates in the Entry of West Nile Virus into the Central Nervous System. Journal of Virology, 2008, 82, 4164-4168.                                 | 3.4  | 70        |
| 43 | Antiviral Peptides Targeting the West Nile Virus Envelope Protein. Journal of Virology, 2007, 81, 2047-2055.                                                   | 3.4  | 96        |
| 44 | Use of RNA Interference to Prevent Lethal Murine West Nile Virus Infection. Journal of Infectious<br>Diseases, 2005, 191, 1148-1154.                           | 4.0  | 92        |