Carine Michiels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6783174/publications.pdf

Version: 2024-02-01

144 papers 21,240 citations

54 h-index 9579 142 g-index

146 all docs

 $\begin{array}{c} 146 \\ \\ \text{docs citations} \end{array}$

146 times ranked

38263 citing authors

#	Article	IF	CITATIONS
1	MitoQ Inhibits Human Breast Cancer Cell Migration, Invasion and Clonogenicity. Cancers, 2022, 14, 1516.	1.7	15
2	Taking Advantage of the Senescence-Promoting Effect of Olaparib after X-ray and Proton Irradiation Using the Senolytic Drug, ABT-263. Cancers, 2022, 14, 1460.	1.7	5
3	A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer and Metastasis Reviews, 2021, 40, 477-500.	2.7	17
4	Alginate@TiO2 hybrid microcapsules with high in vivo biocompatibility and stability for cell therapy. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111770.	2.5	6
5	Association of Variants in <i>TMEM45A</i> With Keratoglobus. JAMA Ophthalmology, 2021, 139, 1089.	1.4	1
6	Pillar[5]arene-Based Polycationic Glyco[2]rotaxanes Designed as <i>Pseudomonas aeruginosa</i> Antibiofilm Agents. Journal of Medicinal Chemistry, 2021, 64, 14728-14744.	2.9	11
7	Gold nanoparticles meet medical radionuclides. Nuclear Medicine and Biology, 2021, 100-101, 61-90.	0.3	22
8	Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Seminars in Cancer Biology, 2020, 60, 96-106.	4.3	67
9	Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers, 2020, 12, 2021.	1.7	103
10	Targeting G Proteinâ€Coupled Receptors with Magnetic Carbon Nanotubes: The Case of the A 3 Adenosine Receptor. ChemMedChem, 2020, 15, 1909-1920.	1.6	4
11	Alginate@TiO2 hybrid microcapsules as a reservoir of beta INS-1E cells with controlled insulin delivery. Journal of Materials Science, 2020, 55, 7857-7869.	1.7	5
12	Could Protons and Carbon Ions Be the Silver Bullets Against Pancreatic Cancer?. International Journal of Molecular Sciences, 2020, 21, 4767.	1.8	7
13	$TGF\hat{I}^22$ -induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nature Communications, 2020, 11 , 454.	5.8	184
14	Cycling hypoxia promotes a pro-inflammatory phenotype in macrophages via JNK/p65 signaling pathway. Scientific Reports, 2020, 10, 882.	1.6	41
15	<i>In Vivo</i> Pharmacokinetics, Biodistribution and Toxicity of Antibody-Conjugated Gold Nanoparticles in Healthy Mice. Journal of Biomedical Nanotechnology, 2020, 16, 985-996.	0.5	7
16	<p>Gold nanoparticles affect the antioxidant status in selected normal human cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 4991-5015.	3.3	35
17	Potentialization of anticancer agents by identification of new chemosensitizers active under hypoxia. Biochemical Pharmacology, 2019, 162, 224-236.	2.0	4
18	Antibody-functionalized gold nanoparticles as tumor-targeting radiosensitizers for proton therapy. Nanomedicine, 2019, 14, 317-333.	1.7	42

#	Article	IF	Citations
19	Radiation-induced synthetic lethality: combination of poly(ADP-ribose) polymerase and RAD51 inhibitors to sensitize cells to proton irradiation. Cell Cycle, 2019, 18, 1770-1783.	1.3	28
20	Thioredoxin Reductase Activity Predicts Gold Nanoparticle Radiosensitization Effect. Nanomaterials, 2019, 9, 295.	1.9	29
21	Characterization of the role of TMEM45A in cancer cell sensitivity to cisplatin. Cell Death and Disease, 2019, 10, 919.	2.7	11
22	The role of thioredoxin reductase in gold nanoparticle radiosensitization effects. Nanomedicine, 2018, 13, 2917-2937.	1.7	40
23	TMEM Proteins in Cancer: A Review. Frontiers in Pharmacology, 2018, 9, 1345.	1.6	135
24	Appropriate Sequence for Afatinib and Cisplatin Combination Improves Anticancer Activity in Head and Neck Squamous Cell Carcinoma. Frontiers in Oncology, 2018, 8, 432.	1.3	12
25	Hybrid Alginate@TiO ₂ Porous Microcapsules as a Reservoir of Animal Cells for Cell Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37865-37877.	4.0	14
26	Proton irradiation orchestrates macrophage reprogramming through NFκB signaling. Cell Death and Disease, 2018, 9, 728.	2.7	58
27	Metallic nanoparticles irradiated by lowâ€energy protons for radiation therapy: Are there significant physical effects to enhance the dose delivery?. Medical Physics, 2017, 44, 4299-4312.	1.6	24
28	Annual Meeting of the International Society of Cancer Metabolism (ISCaM): Metabolic Networks in Cancer. Frontiers in Pharmacology, 2017, 8, 411.	1.6	6
29	Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Frontiers in Immunology, 2017, 8, 828.	2.2	295
30	TMEM45A Is Dispensable for Epidermal Morphogenesis, Keratinization and Barrier Formation. PLoS ONE, 2016, 11, e0147069.	1.1	9
31	Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides. Small, 2016, 12, 321-329.	5.2	8
32	LET-dependent radiosensitization effects of gold nanoparticles for proton irradiation. Nanotechnology, 2016, 27, 455101.	1.3	50
33	Cancer Cells: Unleashing Cancer Cells on Surfaces Exposing Motogenic IGDQ Peptides (Small 3/2016). Small, 2016, 12, 266-266.	5.2	0
34	Biodistribution of 125I-labeled anti-endoglin antibody using SPECT/CT imaging: Impact of in vivo deiodination on tumor accumulation in mice. Nuclear Medicine and Biology, 2016, 43, 415-423.	0.3	13
35	Lactate Dehydrogenase B Controls Lysosome Activity and Autophagy in Cancer. Cancer Cell, 2016, 30, 418-431.	7.7	160
36	Fast Targeting and Cancer Cell Uptake of Luminescent Antibodyâ€Nanozeolite Bioconjugates. Small, 2016, 12, 5431-5441.	5.2	15

#	Article	IF	CITATIONS
37	Cycling hypoxia: A key feature of the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 76-86.	3.3	150
38	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
39	Identification of a cytotoxic molecule in heat-modified citrus pectin. Carbohydrate Polymers, 2016, 137, 39-51.	5.1	19
40	Heat-Modified Citrus Pectin Induces Apoptosis-Like Cell Death and Autophagy in HepG2 and A549 Cancer Cells. PLoS ONE, 2015, 10, e0115831.	1.1	46
41	miRNA-196b inhibits cell proliferation and induces apoptosis in HepG2 cells by targeting IGF2BP1. Molecular Cancer, 2015, 14, 79.	7.9	52
42	Cycling Hypoxia Induces a Specific Amplified Inflammatory Phenotype in Endothelial Cells and Enhances Tumor-Promoting Inflammation In Vivo. Neoplasia, 2015, 17, 66-78.	2.3	32
43	Taxol-induced unfolded protein response activation in breast cancer cells exposed to hypoxia: ATF4 activation regulates autophagy and inhibits apoptosis. International Journal of Biochemistry and Cell Biology, 2015, 62, 1-14.	1.2	56
44	Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System. Cancers, 2015, 7, 481-502.	1.7	6
45	Local Mitochondrial-Endolysosomal Microfusion Cleaves Voltage-Dependent Anion Channel 1 To Promote Survival in Hypoxia. Molecular and Cellular Biology, 2015, 35, 1491-1505.	1.1	40
46	M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 2015, 15, 577.	1.1	641
47	Biotechnological promises of Fe-filled CNTs for cell shepherding and magnetic fluid hyperthermia applications. Nanoscale, 2015, 7, 20474-20488.	2.8	18
48	Effects of copper sulfate-oxidized or myeloperoxidase- modified LDL on lipid loading and programmed cell death in macrophages under hypoxia. Hypoxia (Auckland, N Z), 2014, 2, 153.	1.9	2
49	Meta-Analysis and Gene Set Analysis of Archived Microarrays Suggest Implication of the Spliceosome in Metastatic and Hypoxic Phenotypes. PLoS ONE, 2014, 9, e86699.	1.1	2
50	⁸⁹ Zr-labeled anti-endoglin antibody-targeted gold nanoparticles for imaging cancer: implications for future cancer therapy. Nanomedicine, 2014, 9, 1923-1937.	1.7	33
51	High <scp>TMEM</scp> 45A expression is correlated to epidermal keratinization. Experimental Dermatology, 2014, 23, 339-344.	1.4	31
52	Low dose hypersensitivity following in vitro cell irradiation with charged particles: Is the mechanism the same as with X-ray radiation?. International Journal of Radiation Biology, 2014, 90, 81-89.	1.0	11
53	A Mitochondrial Switch Promotes Tumor Metastasis. Cell Reports, 2014, 8, 754-766.	2.9	478
54	Antibodyâ€functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of ⁸⁹ Zrâ€labeled cetuximab in mice. Contrast Media and Molecular Imaging, 2013, 8, 402-408.	0.4	84

#	Article	IF	Citations
55	Comparison of X-ray and alpha particle effects on a human cancer and endothelial cells: Survival curves and gene expression profiles. Radiotherapy and Oncology, 2013, 106, 397-403.	0.3	22
56	Molecular aspects of cancer cell resistance to chemotherapy. Biochemical Pharmacology, 2013, 85, 1219-1226.	2.0	333
57	Low-LET Proton Irradiation of A549 Non-small Cell Lung Adenocarcinoma Cells: Dose Response and RBE Determination. Radiation Research, 2013, 179, 273-281.	0.7	32
58	Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2013, 441, 393-398.	1.0	23
59	Functionalized Feâ€Filled Multiwalled Carbon Nanotubes as Multifunctional Scaffolds for Magnetization of Cancer Cells. Advanced Functional Materials, 2013, 23, 3173-3184.	7.8	58
60	Differential effect of hypoxia on etoposideâ€induced DNA damage response and p53 regulation in different cell types. Journal of Cellular Physiology, 2013, 228, 2365-2376.	2.0	18
61	Low-Dose Hypersensitivity and Bystander Effect are Not Mutually Exclusive in A549 Lung Carcinoma Cells after Irradiation with Charged Particles. Radiation Research, 2013, 180, 491-498.	0.7	12
62	Magnetic Carbon Nanotubes: Functionalized Fe-Filled Multiwalled Carbon Nanotubes as Multifunctional Scaffolds for Magnetization of Cancer Cells (Adv. Funct. Mater. 25/2013). Advanced Functional Materials, 2013, 23, 3172-3172.	7.8	1
63	A Hybrid Assembly by Encapsulation of Human Cells within Mineralised Beads for Cell Therapy. PLoS ONE, 2013, 8, e54683.	1.1	15
64	Anti-cancer activities of pH- or heat-modified pectin. Frontiers in Pharmacology, 2013, 4, 128.	1.6	133
65	The Role of Hypoxia-Inducible Factor $1\hat{l}\pm$ in Determining the Properties of Castrate-Resistant Prostate Cancers. PLoS ONE, 2013, 8, e54251.	1.1	70
66	Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study. Journal of Materials Chemistry, 2012, 22, 21305.	6.7	51
67	TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer, 2012, 12, 391.	1.1	80
68	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
69	Comparison of the clonogenic survival of A549 non-small cell lung adenocarcinoma cells after irradiation with low-dose-rate beta particles and high-dose-rate X-rays. International Journal of Radiation Biology, 2012, 88, 253-257.	1.0	7
70	Hypoxia-Induced Modulation of Apoptosis and BCL-2 Family Proteins in Different Cancer Cell Types. PLoS ONE, 2012, 7, e47519.	1.1	57
71	The peroxynitrite donor 3-morpholinosydnonimine activates Nrf2 and the UPR leading to a cytoprotective response in endothelial cells. Cellular Signalling, 2012, 24, 199-213.	1.7	23
72	Targeting the Lactate Transporter MCT1 in Endothelial Cells Inhibits Lactate-Induced HIF-1 Activation and Tumor Angiogenesis. PLoS ONE, 2012, 7, e33418.	1.1	412

#	Article	IF	Citations
73	Carbon nanoparticles synthesized by sputtering and gas condensation inside a nanocluster source of fixed dimension. Surface and Coatings Technology, 2011, 205, S577-S581.	2.2	20
74	Hybrid Shell Engineering of Animal Cells for Immune Protections and Regulation of Drug Delivery: Towards the Design of "Artificial Organs― PLoS ONE, 2011, 6, e20983.	1.1	23
75	Chemical reactivity of plasma polymerized allylamine (PPAA) thin films on Au and Si: Study of the thickness influence and aging of the films. Surface and Coatings Technology, 2011, 205, S462-S465.	2.2	14
76	BM-573 inhibits the development of early atherosclerotic lesions in Apo E deficient mice by blocking TP receptors and thromboxane synthase. Prostaglandins and Other Lipid Mediators, 2011, 94, 124-132.	1.0	17
77	Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochemical Pharmacology, 2011, 82, 427-434.	2.0	154
78	Surface properties and cell adhesion onto allylamine-plasma and amine-plasma coated glass coverslips. Journal of Materials Science: Materials in Medicine, 2011, 22, 671-682.	1.7	24
79	Antibody immobilization on gold nanoparticles coated layer-by-layer with polyelectrolytes. Journal of Nanoparticle Research, 2011, 13, 1573-1580.	0.8	42
80	Lactate Influx through the Endothelial Cell Monocarboxylate Transporter MCT1 Supports an NF-κB/IL-8 Pathway that Drives Tumor Angiogenesis. Cancer Research, 2011, 71, 2550-2560.	0.4	637
81	Meta-analysis of archived DNA microarrays identifies genes regulated by hypoxia and involved in a metastatic phenotype in cancer cells. BMC Cancer, 2010, 10, 176.	1.1	14
82	BNIP3 protects HepG2 cells against etoposide-induced cell death under hypoxia by an autophagy-independent pathway. Biochemical Pharmacology, 2010, 80, 1160-1169.	2.0	24
83	A p38MAPK/HIF-1 Pathway Initiated by UVB Irradiation Is Required to Induce Noxa and Apoptosis of Human Keratinocytes. Journal of Investigative Dermatology, 2010, 130, 2269-2276.	0.3	39
84	Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia. Molecular Cancer, 2010, 9, 191.	7.9	90
85	Differential Influence of Anticancer Treatments and Angiogenesis on the Seric Titer of Autoantibody Used as Tumor and Metastasis Biomarker. Neoplasia, 2010, 12, 562-IN15.	2.3	17
86	Implication of Tissue-Factor Bearing Microparticles In Thrombosis Associated with Breast Cancer. Blood, 2010, 116, 3165-3165.	0.6	0
87	Activation of the Oxidative Stress Pathway by HIV-1 Vpr Leads to Induction of Hypoxia-inducible Factor 1α Expression. Journal of Biological Chemistry, 2009, 284, 11364-11373.	1.6	100
88	Hypoxia regulates inflammatory gene expression in endothelial cells. Experimental Cell Research, 2009, 315, 733-747.	1.2	28
89	Intermittent hypoxia is an angiogenic inducer for endothelial cells: role of HIF-1. Angiogenesis, 2009, 12, 47-67.	3.7	86
90	NDRG1 and CRK-I/II are regulators of endothelial cell migration under intermittent hypoxia. Angiogenesis, 2009, 12, 339-354.	3.7	25

#	Article	IF	Citations
91	PVD Synthesis and Transfer into Waterâ€Based Solutions of Functionalized Gold Nanoparticles. Plasma Processes and Polymers, 2009, 6, S888.	1.6	20
92	Hypoxia-Induced Decrease in p53 Protein Level and Increase in c-jun DNA Binding Activity Results in Cancer Cell Resistance to Etoposide. Neoplasia, 2009, 11, 976-IN3.	2.3	38
93	Kinases as Upstream Regulators of the HIF System: Their Emerging Potential as Anti-Cancer Drug Targets. Current Pharmaceutical Design, 2009, 15, 3867-3877.	0.9	35
94	Hypoxia induces protection against etoposide-induced apoptosis: molecular profiling of changes in gene expression and transcription factor activity. Molecular Cancer, 2008, 7, 27.	7.9	69
95	Tumour Hypoxia Affects the Responsiveness of Cancer Cells to Chemotherapy and Promotes Cancer Progression. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 790-797.	0.9	297
96	Glycogen Synthase Kinase 3 Phosphorylates Hypoxia-Inducible Factor $1\hat{l}_{\pm}$ and Mediates Its Destabilization in a VHL-Independent Manner. Molecular and Cellular Biology, 2007, 27, 3253-3265.	1.1	221
97	Reactive Oxygen Species Activate the HIF-1α Promoter Via a Functional NFκB Site. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 755-761.	1.1	565
98	Dual effect of echinomycin on hypoxiaâ€inducible factorâ€i activity under normoxic and hypoxic conditions. FEBS Journal, 2007, 274, 5533-5542.	2.2	52
99	Intermittent hypoxia changes HIF- $\hat{1}$ t phosphorylation pattern in endothelial cells: Unravelling of a new PKA-dependent regulation of HIF- $\hat{1}$ t. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1558-1571.	1.9	61
100	Hypoxia protects HepG2 cells against etoposide-induced apoptosis VIA a HIF-1-independent pathway. Experimental Cell Research, 2006, 312, 2908-2920.	1.2	54
101	Preconditioning of the Tumor Vasculature and Tumor Cells by Intermittent Hypoxia: Implications for Anticancer Therapies. Cancer Research, 2006, 66, 11736-11744.	0.4	175
102	Casein kinase 2 inhibition decreases hypoxia-inducible factor-1 activity under hypoxia through elevated p53 protein level. Journal of Cell Science, 2006, 119, 3351-3362.	1.2	56
103	Role for casein kinase 2 in the regulation of HIF-1 activity. International Journal of Cancer, 2005, 117, 764-774.	2.3	91
104	Hypoxia-inducible Factor-1-dependent Overexpression of Myeloid Cell Factor-1 Protects Hypoxic Cells against tert-Butyl Hydroperoxide-induced Apoptosis. Journal of Biological Chemistry, 2005, 280, 9336-9344.	1.6	114
105	Up-regulation of 94-kDa glucose-regulated protein by hypoxia-inducible factor-1 in human endothelial cells in response to hypoxia. FEBS Letters, 2005, 579, 105-114.	1.3	46
106	Mitochondria permeability transition-dependent tert-butyl hydroperoxide-induced apoptosis in hepatoma HepG2 cells. Biochemical Pharmacology, 2004, 67, 611-620.	2.0	63
107	Hypoxia and CoCl2 protect HepG2 cells against serum deprivation- and t-BHP-induced apoptosis: a possible anti-apoptotic role for HIF-1. Experimental Cell Research, 2004, 295, 340-349.	1.2	85
108	Physiological and Pathological Responses to Hypoxia. American Journal of Pathology, 2004, 164, 1875-1882.	1.9	435

7

#	Article	IF	Citations
109	Caspase activation precedes PTP opening in TNF-α-induced apoptosis in L929 cells. Mitochondrion, 2004, 3, 261-278.	1.6	8
110	Role of ERK and calcium in the hypoxia-induced activation of HIF-1. Journal of Cellular Physiology, 2003, 194, 30-44.	2.0	122
111	Endothelial cell functions. Journal of Cellular Physiology, 2003, 196, 430-443.	2.0	585
112	Regulation of Hypoxia-inducible Factor- $\hat{\Pi}^{\pm}$ Protein Level during Hypoxic Conditions by the Phosphatidylinositol 3-Kinase/Akt/Glycogen Synthase Kinase 3l² Pathway in HepG2 Cells. Journal of Biological Chemistry, 2003, 278, 31277-31285.	1.6	281
113	Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia. Blood, 2002, 99, 4486-4493.	0.6	162
114	Identification of the phospholipase A2 isoforms that contribute to arachidonic acid release in hypoxic endothelial cells: limits of phospholipase A2 inhibitors. Biochemical Pharmacology, 2002, 63, 321-332.	2.0	33
115	Is HIF-1α a pro- or an anti-apoptotic protein?. Biochemical Pharmacology, 2002, 64, 889-892.	2.0	236
116	Regulation of gene expression by oxygen: NF-κB and HIF-1, two extremes. Free Radical Biology and Medicine, 2002, 33, 1231-1242.	1.3	175
117	CoCl ₂ , a Chemical Inducer of Hypoxiaâ€Inducible Factorâ€I, and Hypoxia Reduce Apoptotic Cell Death in Hepatoma Cell Line HepG2. Annals of the New York Academy of Sciences, 2002, 973, 443-447.	1.8	233
118	ERK and Calcium in Activation of HIFâ€1. Annals of the New York Academy of Sciences, 2002, 973, 448-453.	1.8	51
119	PGF2α, a Prostanoid Released by Endothelial Cells Activated by Hypoxia, Is a Chemoattractant Candidate for Neutrophil Recruitment. American Journal of Pathology, 2001, 159, 345-357.	1.9	44
120	Adenovirus-Mediated Gene Transfer of Human Platelet-Activating Factor–Acetylhydrolase Prevents Injury-Induced Neointima Formation and Reduces Spontaneous Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation, 2001, 103, 2495-2500.	1.6	197
121	Identification of hypoxia-responsive messengers expressed in human microvascular endothelial cells using differential display RT-PCR. FEBS Journal, 2000, 267, 3567-3574.	0.2	25
122	Effect of venotropic drugs on the respiratory activity of isolated mitochondria and in endothelial cells. British Journal of Pharmacology, 2000, 130, 1513-1524.	2.7	19
123	Protection by bilobalide of the ischaemiaâ€induced alterations of the mitochondrial respiratory activity. Fundamental and Clinical Pharmacology, 2000, 14, 193-201.	1.0	49
124	HDLassociated PAFâ€AH reduces endothelial adhesiveness in apoE â^'/â^' mice. FASEB Journal, 2000, 14, 2032-2039.	0.2	131
125	Protection of mitochondrial respiration activity by bilobalide. Biochemical Pharmacology, 1999, 58, 109-119.	2.0	72
126	Increase in Circulating Endothelial Cells in Patients with Primary Chronic Venous Insufficiency: Protective Effect of Ginkor Fort in a Randomized Double-Blind, Placebo-Controlled Clinical Trial. Journal of Cardiovascular Pharmacology, 1999, 33, 7-11.	0.8	60

#	Article	IF	Citations
127	Effect of hydroxyethylrutosides on hypoxial-induced neutrophil adherence to umbilical vein endothelium. Cardiovascular Drugs and Therapy, 1998, 12, 375-381.	1.3	26
128	Role of PECAM-1 in the Adherence of PMN to Hypoxic Endothelial Cells. Cell Adhesion and Communication, 1998, 5, 367-374.	1.7	12
129	Effect of Ginkor Fort on Hypoxia-Induced Neutrophil Adherence to Human Saphenous Vein Endothelium. Journal of Cardiovascular Pharmacology, 1998, 31, 456-463.	0.8	23
130	Effects of hydroxyethylrutosides on hypoxiaâ€induced activation of human endothelial cells ⟨i⟩in vitro⟨/i⟩. British Journal of Pharmacology, 1996, 118, 599-604.	2.7	10
131	Cellular aging and the importance of energetic factors. Experimental Gerontology, 1995, 30, 1-22.	1.2	45
132	Protection of hypoxia-induced ATP decrease in endothelial cells by ginkgo beloba extract and bilobalide. Biochemical Pharmacology, 1995, 50, 991-999.	2.0	118
133	Importance of SE-glutathione peroxidase, catalase, and CU/ZN-SOD for cell survival against oxidative stress. Free Radical Biology and Medicine, 1994, 17, 235-248.	1.3	996
134	Hypoxia Stimulates Human Endothelial Cells to Release Smooth Muscle Cell Mitogens: Role of Prostaglandins and bFGF. Experimental Cell Research, 1994, 213, 43-54.	1.2	76
135	Hypoxia-Induced Activation of Endothelial Cells as a Possible Cause of Venous Diseases: Hypothesis. Angiology, 1993, 44, 639-646.	0.8	55
136	Effect of hypoxia upon intracellular calcium concentration of human endothelial cells. Journal of Cellular Physiology, 1992, 152, 215-221.	2.0	133
137	Human umbilical vein endothelial cells submitted to hypoxia-reoxygenation in vitro: Implication of free radicals, xanthine oxidase, and energy deficiency. Journal of Cellular Physiology, 1992, 153, 53-61.	2.0	67
138	Cytotoxicity of linoleic acid peroxide, malondialdehyde and 4-hydroxynonenal towards human fibroblasts. Toxicology, 1991, 66, 225-234.	2.0	48
139	Association of Antioxidant Systems in the Protection of Human Fibroblasts Against Oxygen Derived Free Radicals. Free Radical Research Communications, 1991, 14, 323-334.	1.8	18
140	Comparative study of oxygen toxicity in human fibroblasts and endothelial cells. Journal of Cellular Physiology, 1990, 144, 295-302.	2.0	52
141	Respiratory activity of isolated rat liver mitochondria following in vitro exposure to oxygen species: A threshold study. Mechanisms of Ageing and Development, 1990, 51, 249-263.	2.2	18
142	Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mechanisms of Ageing and Development, 1990, 51, 283-297.	2.2	635
143	Use of the inhibition of enzymatic antioxidant systems in order to evaluate their physiological importance. FEBS Journal, 1988, 177, 435-441.	0.2	95
144	Comparative study of the enzymatic defense systems against oxygen-derived free radicals: The key role of glutathione peroxidase. Free Radical Biology and Medicine, 1987, 3, 3-7.	1.3	144