Yuebing Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6783094/publications.pdf

Version: 2024-02-01

		43973	51492
173	8,251	48	86
papers	citations	h-index	g-index
178	178	178	11173
all docs	docs citations	times ranked	citing authors
			0

#	Article	IF	CITATIONS
1	Heat-Mediated Optical Manipulation. Chemical Reviews, 2022, 122, 3122-3179.	23.0	61
2	Bubbleâ€pen lithography: Fundamentals and applications. Aggregate, 2022, 3, .	5.2	8
3	Roomâ€Temperature Observation of Nearâ€Intrinsic Exciton Linewidth in Monolayer WS ₂ . Advanced Materials, 2022, 34, e2108721.	11.1	11
4	Optical manipulation and assembly of micro/nanoscale objects on solid substrates. IScience, 2022, 25, 104035.	1.9	13
5	Roomâ€Temperature Observation of Nearâ€Intrinsic Exciton Linewidth in Monolayer WS ₂ (Adv. Mater. 15/2022). Advanced Materials, 2022, 34, .	11.1	2
6	Opto-Thermocapillary Nanomotors on Solid Substrates. ACS Nano, 2022, 16, 8820-8826.	7.3	19
7	Universal optothermal micro/nanoscale rotors. Science Advances, 2022, 8, .	4.7	23
8	Investigating water/oil interfaces with opto-thermophoresis. Nature Communications, 2022, 13, .	5.8	8
9	Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells. ACS Nano, 2022, 16, 10878-10889.	7.3	14
10	Atomistic modeling and rational design of optothermal tweezers for targeted applications. Nano Research, 2021, 14, 295-303.	5.8	23
11	Decoding Optical Data with Machine Learning. Laser and Photonics Reviews, 2021, 15, 2000422.	4.4	18
12	Optothermal Manipulation of Liquid Droplets. , 2021, , .		0
13	Broadband Forward Light Scattering by Architectural Design of Core–Shell Silicon Particles. Advanced Functional Materials, 2021, 31, 2100915.	7.8	11
14	Light-Driven Magnetic Encoding for Hybrid Magnetic Micromachines. Nano Letters, 2021, 21, 1628-1635.	4.5	17
15	Label-Free Ultrasensitive Detection of Abnormal Chiral Metabolites in Diabetes. ACS Nano, 2021, 15, 6448-6456.	7.3	35
16	Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres. Advanced Materials, 2021, 33, e2007236.	11.1	15
17	Optothermally Assembled Nanostructures. Accounts of Materials Research, 2021, 2, 352-363.	5.9	21
18	Plasmonic Nanotweezers and Nanosensors for Pointâ€ofâ€Care Applications. Advanced Optical Materials, 2021, 9, 2100050.	3.6	16

#	Article	IF	CITATIONS
19	Dielectric Nanospheres: Directional Modulation of Exciton Emission Using Single Dielectric Nanospheres (Adv. Mater. 20/2021). Advanced Materials, 2021, 33, 2170153.	11.1	1
20	Enhancing Single-Molecule Fluorescence Spectroscopy with Simple and Robust Hybrid Nanoapertures. ACS Photonics, 2021, 8, 1673-1682.	3.2	9
21	Opto-refrigerative tweezers. Science Advances, 2021, 7, .	4.7	32
22	Plasmonic Nanotweezers and Nanosensors for Pointâ€ofâ€Care Applications (Advanced Optical Materials) Tj ET	Qq <u>Q</u> Q0 rg	gBT/Overlock
23	Symmetric and isotropic micro/nanorotors driven by a plane-polarized gaussian laser beam. , 2021, , .		0
24	Optical Biosensing: Sensitivityâ€Enhancing Strategies in Optical Biosensing (Small 4/2021). Small, 2021, 17, 2170016.	5.2	2
25	Directional light emission by electric and magnetic dipoles near a nanosphere: an analytical approach based on the generalized Mie theory. Optics Letters, 2021, 46, 302.	1.7	8
26	Liquid Optothermoelectrics: Fundamentals and Applications. Langmuir, 2021, 37, 1315-1336.	1.6	14
27	A Deep Mixture Density Network for On-Demand Inverse Design of Thin Film Reflectors. , 2021, , .		0
28	Tunable Chiral Optics in All-Solid-Phase Reconfigurable Dielectric Nanostructures. Nano Letters, 2021, 21, 973-979.	4.5	42
29	A mixture-density-based tandem optimization network for on-demand inverse design of thin-film high reflectors. Nanophotonics, 2021, 10, 4057-4065.	2.9	18
30	Grand Challenges in Nanofabrication: There Remains Plenty of Room at the Bottom. Frontiers in Nanotechnology, 2021, 3, .	2.4	6
31	Sensitivityâ€Enhancing Strategies in Optical Biosensing. Small, 2021, 17, e2004988.	5.2	16
32	Self-Limiting Opto-Electrochemical Thinning of Transition-Metal Dichalcogenides. ACS Applied Materials & Dichalcogenide	4.0	5
33	Controlling the polarization of chiral dipolar emission with a spherical dielectric nanoantenna. Journal of Chemical Physics, 2021, 155, 224110.	1.2	2
34	Plasmon-enhanced hierarchical photoelectrodes with mechanical flexibility for hydrogen generation from urea solution and human urine. Journal of Applied Electrochemistry, 2020, 50, 63-69.	1.5	5
35	Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow. Nano Letters, 2020, 20, 768-779.	4.5	48
36	Optoelectronic Thinning of Transition Metal Dichalcogenides for Device Fabrication. , 2020, , .		1

#	Article	IF	CITATIONS
37	Suppressing material loss in the visible and near-infrared range for functional nanophotonics using bandgap engineering. Nature Communications, 2020, 11, 5055.	5.8	29
38	Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid. Nano Letters, 2020, 20, 7020-7027.	4.5	30
39	Nanophotonics and optoelectronics based on two-dimensional MoS2., 2020, , 121-137.		О
40	Deep Convolutional Mixture Density Network for Inverse Design of Layered Photonic Structures. ACS Photonics, 2020, 7, 2703-2712.	3.2	60
41	Opto-thermoelectric microswimmers. Light: Science and Applications, 2020, 9, 141.	7.7	47
42	Opto-Thermoelectric Tweezers: Principles and Applications. Frontiers in Physics, 2020, 8, .	1.0	11
43	Biologically inspired flexible photonic films for efficient passive radiative cooling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14657-14666.	3.3	260
44	Opto-thermoelectric pulling of light-absorbing particles. Light: Science and Applications, 2020, 9, 34.	7.7	33
45	Opto-thermoelectric Speckle Tweezers. , 2020, , .		1
46	Reconfigurable Assembly of Chiral Metamaterials on Solid Substrates. , 2020, , .		1
46	Reconfigurable Assembly of Chiral Metamaterials on Solid Substrates., 2020, , . Opto-thermoelectric speckle tweezers. Nanophotonics, 2020, 9, 927-933.	2.9	1
		2.9	
47	Opto-thermoelectric speckle tweezers. Nanophotonics, 2020, 9, 927-933.		18
47	Opto-thermoelectric speckle tweezers. Nanophotonics, 2020, 9, 927-933. Optical Patterning of Two-Dimensional Materials. Research, 2020, 2020, 6581250. Detecting Diabetes-Induced Abnormal Chirality in Urine via Accumulation-Assisted Plasmonic Chiral		18 30
48	Opto-thermoelectric speckle tweezers. Nanophotonics, 2020, 9, 927-933. Optical Patterning of Two-Dimensional Materials. Research, 2020, 2020, 6581250. Detecting Diabetes-Induced Abnormal Chirality in Urine via Accumulation-Assisted Plasmonic Chiral Sensing., 2020,,.		18 30 4
47 48 49 50	Opto-thermoelectric speckle tweezers. Nanophotonics, 2020, 9, 927-933. Optical Patterning of Two-Dimensional Materials. Research, 2020, 2020, 6581250. Detecting Diabetes-Induced Abnormal Chirality in Urine via Accumulation-Assisted Plasmonic Chiral Sensing., 2020,, Active Modulation of Valley Excitons in a Monolayer WSe2 via Chiral Metamaterials., 2020,, Quantifying Thermo-Electro-Mechanics for Manipulation and Rotation of single Dielectric particles		18 30 4 0
47 48 49 50	Optical Patterning of Two-Dimensional Materials. Research, 2020, 2020, 6581250. Detecting Diabetes-Induced Abnormal Chirality in Urine via Accumulation-Assisted Plasmonic Chiral Sensing., 2020,,. Active Modulation of Valley Excitons in a Monolayer WSe2 via Chiral Metamaterials., 2020,,. Quantifying Thermo-Electro-Mechanics for Manipulation and Rotation of single Dielectric particles under Laser Illumination., 2020,,.		18 30 4 0

#	Article	IF	Citations
55	Engineering Dielectric Metasurfaces for Chirality-Sorting Optical Forces and Fano-Interference-Enhanced Chirality. , 2020, , .		1
56	Perfluoropentane-in-Water Biphasic System for Low-Power Photothermal Bubble Generation and Sensitive Immunoassay., 2020, , .		0
57	Microbubble-Assisted Preconcentration and Ultrasensitive Detection of Biomolecules Using Plasmonic Chiral Metamaterials. , 2020, , .		0
58	A Biphasic Liquid System for Low-Power Optothermal Bubble Generation and Enhanced Surface Binding of Proteins. , 2020, , .		0
59	Optical Manipulation and Assembly of Colloidal Particles on Solid Substrates. , 2020, , .		0
60	Solid-Phase Optical Manipulation and Assembly of Colloidal Particles., 2020,,.		0
61	Microbubble-Assisted Concentration and Ultrasensitive Detection of Biomolecules Using Plasmonic Chiral Metamaterials. , 2020, , .		0
62	Reconfigurable Assembly of Chiral Nanostructures on Solid Substrates. , 2020, , .		0
63	Quantifying the Response of Diverse Nanoparticles Towards Laser-Induced Thermoelectric Field to Enhance Applications in Nanorobotics. , 2020, , .		0
64	Thermo-Electro-Mechanics at Individual Particles in Complex Colloidal Systems. Journal of Physical Chemistry C, 2019, 123, 21639-21644.	1.5	18
65	Dark Excitons: Darkâ€Excitonâ€Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS ₂ at Room Temperature (Small 31/2019). Small, 2019, 15, 1970164.	5.2	0
66	Digital Assembly of Colloidal Particles for Nanoscale Manufacturing. Particle and Particle Systems Characterization, 2019, 36, 1900152.	1.2	10
67	Digital manufacturing of advanced materials: Challenges and perspective. Materials Today, 2019, 28, 49-62.	8.3	32
68	Roomâ€Temperature Active Modulation of Valley Dynamics in a Monolayer Semiconductor through Chiral Purcell Effects. Advanced Materials, 2019, 31, e1904132.	11.1	46
69	Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale. Nanophotonics, 2019, 8, 339-366.	2.9	226
70	Darkâ€Excitonâ€Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS ₂ at Room Temperature. Small, 2019, 15, e1900982.	5.2	25
71	Organic-Inorganic Hybrid Pillarene-Based Nanomaterial for Label-Free Sensing and Catalysis. Matter, 2019, 1, 848-861.	5.0	59
72	Opto-thermophoretic fiber tweezers. Nanophotonics, 2019, 8, 475-485.	2.9	31

#	Article	IF	CITATIONS
7 3	Optical Nanoprinting of Colloidal Particles and Functional Structures. ACS Nano, 2019, 13, 3783-3795.	7.3	64
74	All-optical reconfigurable chiral meta-molecules. Materials Today, 2019, 25, 10-20.	8.3	52
75	Near-Ultraviolet Dielectric Metasurfaces: from Surface-Enhanced Circular Dichroism Spectroscopy to Polarization-Preserving Mirrors. Journal of Physical Chemistry C, 2019, 123, 11814-11822.	1.5	42
76	Accumulation-Driven Unified Spatiotemporal Synthesis and Structuring of Immiscible Metallic Nanoalloys. Matter, 2019, 1, 1606-1617.	5.0	29
77	Optical nanomanipulation on solid substrates via optothermally-gated photon nudging. Nature Communications, 2019, 10, 5672.	5.8	39
78	Chiral Metamaterials: Roomâ€Temperature Active Modulation of Valley Dynamics in a Monolayer Semiconductor through Chiral Purcell Effects (Adv. Mater. 49/2019). Advanced Materials, 2019, 31, 1970347.	11,1	2
79	Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation. , 2019, , .		1
80	Manipulating Fano coupling in all-dielectric meta-molecules. , 2019, , .		0
81	Manipulating Fano coupling in the opto-thermoelectric trap. , 2019, , .		0
82	"Pointâ€andâ€Shoot―Synthesis of Metallic Ring Arrays and Surfaceâ€Enhanced Optical Spectroscopy. Advanced Optical Materials, 2018, 6, 1701213.	3.6	23
83	Optically active plasmonic resonance in self-assembled nanostructures. Materials Chemistry Frontiers, 2018, 2, 662-678.	3.2	39
84	Tunable Fano Resonance and Plasmon–Exciton Coupling in Single Au Nanotriangles on Monolayer WS ₂ at Room Temperature. Advanced Materials, 2018, 30, e1705779.	11.1	88
85	Tunable Resonance Coupling in Single Si Nanoparticle–Monolayer WS ₂ Structures. ACS Applied Materials & amp; Interfaces, 2018, 10, 16690-16697.	4.0	82
86	Moiré Metamaterials and Metasurfaces: Moiré Metamaterials and Metasurfaces (Advanced Optical) Tj ETQq	0	·/Qverlock 10
87	Moir $ ilde{\mathbb{A}}$ $ ilde{\mathbb{Q}}$ Metamaterials and Metasurfaces. Advanced Optical Materials, 2018, 6, 1701057.	3.6	58
88	High-Performance Ultrathin Active Chiral Metamaterials. ACS Nano, 2018, 12, 5030-5041.	7.3	89
89	Opto-thermoelectric nanotweezers. Nature Photonics, 2018, 12, 195-201.	15.6	216
90	Design and applications of lattice plasmon resonances. Nano Research, 2018, 11, 4423-4440.	5.8	56

#	Article	IF	CITATIONS
91	Optothermoplasmonic Patterning: Optothermoplasmonic Nanolithography for Onâ€Demand Patterning of 2D Materials (Adv. Funct. Mater. 41/2018). Advanced Functional Materials, 2018, 28, 1870299.	7.8	4
92	Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation. ACS Nano, 2018, 12, 10383-10392.	7.3	41
93	Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles. Langmuir, 2018, 34, 13252-13262.	1.6	43
94	Opto-Thermophoretic Tweezers and Assembly. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.8	24
95	Optothermal Manipulations of Colloidal Particles and Living Cells. Accounts of Chemical Research, 2018, 51, 1465-1474.	7.6	108
96	Optothermophoretic Manipulation of Colloidal Particles in Nonionic Liquids. Journal of Physical Chemistry C, 2018, 122, 24226-24234.	1.5	26
97	Fano Resonances: Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature (Adv. Mater. 22/2018). Advanced Materials, 2018, 30, 1870155.	11.1	1
98	Chiral metamaterials <i>via</i> Moiré stacking. Nanoscale, 2018, 10, 18096-18112.	2.8	39
99	Opto-Thermophoretic Manipulation and Construction of Colloidal Superstructures in Photocurable Hydrogels. ACS Applied Nano Materials, 2018, 1, 3998-4004.	2.4	33
100	Plasmofluidics for Biosensing and Medical Diagnostics. , 2018, , 213-247.		1
101	Optothermoplasmonic Nanolithography for Onâ€Demand Patterning of 2D Materials. Advanced Functional Materials, 2018, 28, 1803990.	7.8	35
102	Large-Area Au-Nanoparticle-Functionalized Si Nanorod Arrays for Spatially Uniform Surface-Enhanced Raman Spectroscopy. ACS Nano, 2017, 11, 1478-1487.	7.3	199
103	Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells. ACS Nano, 2017, 11, 3147-3154.	7.3	114
104	Moiré Chiral Metamaterials. Advanced Optical Materials, 2017, 5, 1700034.	3.6	91
105	Patterning and fluorescence tuning of quantum dots with haptic-interfaced bubble printing. Journal of Materials Chemistry C, 2017, 5, 5693-5699.	2.7	30
106	High-Resolution Bubble Printing of Quantum Dots. ACS Applied Materials & Eamp; Interfaces, 2017, 9, 16725-16733.	4.0	59
107	Reconfigurable opto-thermoelectric printing of colloidal particles. Chemical Communications, 2017, 53, 7357-7360.	2.2	39
108	Controlling Plasmonâ€Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules. Small, 2017, 13, 1701763.	5.2	15

#	Article	IF	CITATIONS
109	Opto-thermophoretic assembly of colloidal matter. Science Advances, 2017, 3, e1700458.	4.7	115
110	Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2. Nanoscale, 2017, 9, 13947-13955.	2.8	35
111	Enantiodiscrimination: Moir \tilde{A} © Chiral Metamaterials (Advanced Optical Materials 16/2017). Advanced Optical Materials, 2017, 5, .	3.6	0
112	Interfacial-entropy-driven thermophoretic tweezers. Lab on A Chip, 2017, 17, 3061-3070.	3.1	61
113	Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO ₃ /BiVO ₄ Nanoporous Sphere Arrays. Nano Letters, 2017, 17, 8012-8017.	4.5	164
114	Plasmonic Nanostructures: Controlling Plasmonâ€Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules (Small 38/2017). Small, 2017, 13, .	5.2	0
115	Molecular-Fluorescence Enhancement via Blue-Shifted Plasmon-Induced Resonance Energy Transfer. Journal of Physical Chemistry C, 2016, 120, 14820-14827.	1.5	38
116	Plasmonic Metasurfaces: Tunable Graphene Metasurfaces with Gradient Features by Self-Assembly-Based Moiré Nanosphere Lithography (Advanced Optical Materials 12/2016). Advanced Optical Materials, 2016, 4, 1904-1904.	3.6	0
117	Substrate-Independent Lattice Plasmon Modes for High-Performance On-Chip Plasmonic Sensors. Plasmonics, 2016, 11, 1427-1435.	1.8	5
118	Plasmon-enhanced nanoporous BiVO4photoanodes for efficient photoelectrochemical water oxidation. Nanotechnology, 2016, 27, 235401.	1.3	19
119	Dual-band moir $ ilde{A}$ metasurface patches for multifunctional biomedical applications. Nanoscale, 2016, 8, 18461-18468.	2.8	32
120	Hydrogen-reduced bismuth oxyiodide nanoflake arrays with plasmonic enhancements for efficient photoelectrochemical water reduction. Electrochimica Acta, 2016, 219, 20-27.	2.6	26
121	Tunable Graphene Metasurfaces with Gradient Features by Selfâ€Assemblyâ€Based Moiré Nanosphere Lithography. Advanced Optical Materials, 2016, 4, 2035-2043.	3.6	21
122	Molecular Plasmonics: From Molecular-Scale Measurements and Control to Applications. ACS Symposium Series, 2016, , 23-52.	0.5	2
123	Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis. ACS Nano, 2016, 10, 9659-9668.	7.3	138
124	Photoswitchable Rabi Splitting in Hybrid Plasmon–Waveguide Modes. Nano Letters, 2016, 16, 7655-7663.	4.5	52
125	Thermodynamic synthesis of solution processable ladder polymers. Chemical Science, 2016, 7, 881-889.	3.7	70
126	Bubble-Pen Lithography. Nano Letters, 2016, 16, 701-708.	4.5	170

#	Article	IF	CITATIONS
127	Radiative Enhancement of Plasmonic Nanopatch Antennas. Plasmonics, 2016, 11, 213-222.	1.8	13
128	Plasmofluidics: Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale (Small 35/2015). Small, 2015, 11, 4422-4422.	5. 2	1
129	Regioselective Localization and Tracking of Biomolecules on Single Gold Nanoparticles. Advanced Science, 2015, 2, 1500232.	5.6	17
130	Multiphoton Plasmonics: Regioselective Localization and Tracking of Biomolecules on Single Gold Nanoparticles (Adv. Sci. $11/2015$). Advanced Science, 2015, 2, .	5.6	1
131	Optimizing plasmonic nanoantennas via coordinated multiple coupling. Scientific Reports, 2015, 5, 14788.	1.6	84
132	Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems. AIP Advances, 2015, 5, 097161.	0.6	9
133	Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale. Small, 2015, 11, 4423-4444.	5.2	61
134	Efficient Photoelectrochemical Water Oxidation over Hydrogenâ∈Reduced Nanoporous BiVO ₄ with Ni–B _i Electrocatalyst. ChemElectroChem, 2015, 2, 1385-1395.	1.7	50
135	Electronic properties of tin dichalcogenide monolayers and effects of hydrogenation and tension. Journal of Materials Chemistry C, 2015, 3, 3714-3721.	2.7	34
136	Moiré Nanosphere Lithography. ACS Nano, 2015, 9, 6031-6040.	7.3	91
137	Engineering of parallel plasmonic–photonic interactions for on-chip refractive index sensors. Nanoscale, 2015, 7, 12205-12214.	2.8	29
138	Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: enhanced robustness and wavelength tunability. Optics Letters, 2015, 40, 2060.	1.7	10
139	Tunable multiband metasurfaces by moiré nanosphere lithography. Nanoscale, 2015, 7, 20391-20396.	2.8	29
140	Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets. Nano Letters, 2015, 15, 7519-7525.	4.5	82
141	Active molecular plasmonics: tuning surface plasmon resonances by exploiting molecular dimensions. Nanophotonics, 2015, 4, 186-197.	2.9	26
142	Towards rational design of multifunctional theranostic nanoparticles: what barriers do we need to overcome?. Nanomedicine, 2014, 9, 1767-1770.	1.7	11
143	Molecular Switches and Motors on Surfaces. Annual Review of Physical Chemistry, 2013, 64, 605-630.	4.8	119
144	Viologen-Mediated Assembly of and Sensing with Carboxylatopillar[5]arene-Modified Gold Nanoparticles. Journal of the American Chemical Society, 2013, 135, 1570-1576.	6.6	432

#	Article	IF	Citations
145	Photoreaction of Matrix-Isolated Dihydroazulene-Functionalized Molecules on Au $\{111\}$. Nano Letters, 2013, 13, 337-343.	4.5	21
146	Photoresponsive Molecules in Wellâ€Defined Nanoscale Environments. Advanced Materials, 2013, 25, 302-312.	11.1	57
147	Effect of Tether Conductivity on the Efficiency of Photoisomerization of Azobenzene-Functionalized Molecules on Au{111}. Journal of Physical Chemistry Letters, 2012, 3, 2388-2394.	2.1	23
148	Surface-Enhanced Raman Spectroscopy To Probe Photoreaction Pathways and Kinetics of Isolated Reactants on Surfaces: Flat versus Curved Substrates. Nano Letters, 2012, 12, 5362-5368.	4.5	40
149	Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chemical Society Reviews, 2012, 41, 97-114.	18.7	487
150	Visibly Transparent Polymer Solar Cells Produced by Solution Processing. ACS Nano, 2012, 6, 7185-7190.	7.3	492
151	A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection. Lab on A Chip, 2011, 11, 1795.	3.1	74
152	Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors. ACS Nano, 2011, 5, 9877-9882.	7.3	348
153	All-Optical Modulation of Localized Surface Plasmon Coupling in a Hybrid System Composed of Photoswitchable Gratings and Au Nanodisk Arrays. Journal of Physical Chemistry C, 2011, 115, 7717-7722.	1.5	52
154	Surface-Enhanced Raman Spectroscopy to Probe Reversibly Photoswitchable Azobenzene in Controlled Nanoscale Environments. Nano Letters, 2011, 11, 3447-3452.	4.5	100
155	Incident-Angle-Modulated Molecular Plasmonic Switches: A Case of Weak Exciton–Plasmon Coupling. Nano Letters, 2011, 11, 2061-2065.	4.5	107
156	Dynamic Tuning of Plasmon–Exciton Coupling in Arrays of Nanodisk–Jâ€eggregate Complexes. Advanced Materials, 2010, 22, 3603-3607.	11.1	80
157	Effects of Intrinsic Fano Interference on Surface Enhanced Raman Spectroscopy: Comparison between Platinum and Gold. Journal of Physical Chemistry C, 2010, 114, 18059-18066.	1.5	46
158	Towards nanoporous polymer thin film-based drug delivery systems. Thin Solid Films, 2009, 517, 1794-1798.	0.8	40
159	Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays. Journal of Physical Chemistry C, 2009, 113, 7019-7024.	1.5	63
160	Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Optics Letters, 2009, 34, 2351.	1.7	80
161	Active Molecular Plasmonics: Controlling Plasmon Resonances with Molecular Switches. Nano Letters, 2009, 9, 819-825.	4.5	213
162	Coupling between Molecular and Plasmonic Resonances: Effect of Molecular Absorbance. Journal of Physical Chemistry C, 2009, 113, 18499-18503.	1.5	51

#	Article	IF	CITATIONS
163	Lightâ€Driven Plasmonic Switches Based on Au Nanodisk Arrays and Photoresponsive Liquid Crystals. Advanced Materials, 2008, 20, 3528-3532.	11.1	150
164	Effects of Geometry and Composition on Charge-Induced Plasmonic Shifts in Gold Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 7309-7317.	1.5	79
165	Thermal behavior of localized surface plasmon resonance of Auâ^•TiO2 core/shell nanoparticle arrays. Applied Physics Letters, 2007, 90, 183117.	1.5	52
166	Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings: fabrication and application in biosensing. Journal of Materials Chemistry, 2007, 17, 4896.	6.7	95
167	Combinational template-assisted fabrication of hierarchically ordered nanowire arrays on substrates for device applications. Applied Physics Letters, 2006, 89, 233104.	1.5	49
168	Fabrication of large area ordered metal nanoring arrays for nanoscale optical sensors. Journal of Non-Crystalline Solids, 2006, 352, 2532-2535.	1.5	27
169	Microstructure-dependent band structure of HfO2 thin films. Thin Solid Films, 2006, 504, 197-200.	0.8	20
170	Thermal behaviour of ultra-thin Co overlayers on rutile TiO2(100) surface. Surface Science, 2005, 589, 32-41.	0.8	26
171	Al2O3-incorporation effect on the band structure of Ba0.5Sr0.5TiO3 thin films. Applied Physics Letters, 2005, 86, 112910.	1.5	23
172	Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE. Journal of Crystal Growth, 2004, 268, 369-374.	0.7	14
173	Accumulation-Driven Surfactant-Free Synthesis of Architectured Immiscible Metallic Nanoalloys with Enhanced Catalysis. SSRN Electronic Journal, 0, , .	0.4	O