Ioan Stamatin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6782986/publications.pdf

Version: 2024-02-01

331670 345221 1,553 72 21 36 citations h-index g-index papers 72 72 72 2120 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Applied Microbiology and Biotechnology, 2013, 97, 7627-7637.	3.6	126
2	The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 44-48.	2.7	107
3	Fabrication of hydrophobic and antireflective coatings based on hybrid silica films by sol–gel process. Surface and Coatings Technology, 2012, 206, 4449-4454.	4.8	85
4	Morphic transitions of nanocarbons via laser pyrolysis of polyimide films. Journal of Analytical and Applied Pyrolysis, 2016, 121, 275-286.	5. 5	64
5	Screen-printed Prussian Blue modified electrode for simultaneous detection of hydroquinone and catechol. Sensors and Actuators B: Chemical, 2014, 203, 824-832.	7.8	63
6	Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2005, 248, 422-427.	6.1	48
7	Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 169, 151-158.	3.5	48
8	Electrocatalytic voltammetric determination of guanine at a cobalt phthalocyanine modified carbon nanotubes paste electrode. Journal of Electroanalytical Chemistry, 2011, 654, 8-12.	3.8	47
9	Eco-designed biohybrids based on liposomes, mint–nanosilver and carbon nanotubes for antioxidant and antimicrobial coating. Materials Science and Engineering C, 2014, 39, 177-185.	7.3	43
10	Selective voltammetric determination of electroactive neuromodulating species in biological samples using iron(II) phthalocyanine modified multi-wall carbon nanotubes paste electrode. Sensors and Actuators B: Chemical, 2011, 156, 731-736.	7.8	40
11	Synthesis and characterization of PAni–SiO2 and PTh–SiO2 nanocomposites' thin films by plasma polymerization. Progress in Solid State Chemistry, 2006, 34, 191-199.	7.2	36
12	Voltammetric determination of dihydroxybenzene isomers using a disposable pencil graphite electrode modified with cobalt-phthalocyanine. Mikrochimica Acta, 2017, 184, 1481-1488.	5.0	36
13	Polycaprolactone biopolymer thin films obtained by matrix assisted pulsed laser evaporation. Applied Surface Science, 2007, 253, 6476-6479.	6.1	34
14	PAN–PAni nanocomposites obtained in thermocentrifugal fields. Thin Solid Films, 2006, 495, 113-117.	1.8	33
15	Deposition of antibacterial of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80/gentamicin sulfate composite coatings by MAPLE. Applied Surface Science, 2011, 257, 5287-5292.	6.1	32
16	Thin film composites of nanocarbons-polyaniline obtained by plasma polymerization technique. Composites Part A: Applied Science and Manufacturing, 2005, 36, 481-485.	7.6	31
17	Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems. Applied Surface Science, 2006, 252, 4647-4651.	6.1	31
18	A chemically intuitive proposal for the structure of n-diamond. Molecular Physics, 2005, 103, 2707-2715.	1.7	23

#	Article	IF	Citations
19	Processing of mussel adhesive protein analog thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2005, 247, 217-224.	6.1	22
20	Nanocomposites based on functionalized nanotubes in polyaniline matrix by plasma polymerization. Progress in Solid State Chemistry, 2006, 34, 181-189.	7.2	22
21	Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples. Talanta, 2016, 160, 489-498.	5.5	22
22	Laser-induced graphene as the microporous layer in proton exchange membrane fuel cells. Applied Surface Science, 2020, 504, 144096.	6.1	22
23	Functionalized polyvinyl alcohol derivatives thin films for controlled drug release and targeting systems: MAPLE deposition and morphological, chemical and in vitro characterization. Applied Surface Science, 2009, 255, 5600-5604.	6.1	21
24	Magnetic core/shell nanoparticle thin films deposited by MAPLE: Investigation by chemical, morphological and in vitro biological assays. Applied Surface Science, 2012, 258, 9250-9255.	6.1	21
25	Processing of mussel-adhesive protein analog copolymer thin films by matrix-assisted pulsed laser evaporation. Applied Surface Science, 2005, 248, 416-421.	6.1	20
26	Field emission properties of silicon carbide and diamond-like carbon (DLC) films made by chemical vapour deposition techniques. Applied Surface Science, 1999, 146, 152-157.	6.1	19
27	On the computer-aided modelling of analyte–receptor interactions for an efficient sensor design. Thin Solid Films, 2006, 495, 312-315.	1.8	19
28	Thin films of polymer mimics of cross-linking mussel adhesive proteins deposited by matrix assisted pulsed laser evaporation. Applied Surface Science, 2009, 255, 5496-5498.	6.1	19
29	Physical and Barrier Properties of Apple Pectin/Cassava Starch Composite Films Incorporating <i>Laurus nobilis</i> â€L. Oil and Oleic Acid. Journal of Food Processing and Preservation, 2014, 38, 1982-1993.	2.0	19
30	Rapid voltammetric detection of kojic acid at a multi-walled carbon nanotubes screen-printed electrode. Sensors and Actuators B: Chemical, 2017, 241, 406-412.	7.8	19
31	Space-Filling Supercapacitor Carpets: Highly scalable fractal architecture for energy storage. Journal of Power Sources, 2018, 384, 145-155.	7.8	19
32	MAPLE deposition of Mn(III) metalloporphyrin thin films: Structural, topographical and electrochemical investigations. Applied Surface Science, 2011, 257, 5293-5297.	6.1	18
33	Pd-decorated CNT as sensitive material for applications in hydrogen isotopes sensing - Application as gas sensor. International Journal of Hydrogen Energy, 2021, 46, 11015-11024.	7.1	18
34	Functional porphyrin thin films deposited by matrix assisted pulsed laser evaporation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 169, 106-110.	3.5	17
35	Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation. Applied Surface Science, 2013, 278, 207-210.	6.1	17
36	Matrix assisted pulsed laser evaporation of cinnamate-pullulan and tosylate-pullulan polysaccharide derivative thin films for pharmaceutical applications. Applied Surface Science, 2007, 253, 7755-7760.	6.1	16

3

#	Article	IF	Citations
37	ON THE STRUCTURE OF i-CARBON. Journal of Theoretical and Computational Chemistry, 2006, 05, 175-185.	1.8	15
38	Laser deposition of cryoglobulin blood proteins thin films by matrix assisted pulsed laser evaporation. Applied Surface Science, 2006, 252, 4652-4655.	6.1	15
39	Synthesis and characterization of polyaniline–Fe@C magnetic nanocomposite powder. Applied Surface Science, 2016, 374, 213-221.	6.1	15
40	Matrix assisted pulsed laser evaporation of poly(d,l-lactide) thin films for controlled-release drug systems. Applied Surface Science, 2007, 253, 7702-7706.	6.1	14
41	Electrochemical Behaviour and Rapid Determination of Lâ€Dopa at Electrochemically Pretreated Screen Printed Carbon Electrode. Electroanalysis, 2015, 27, 2275-2279.	2.9	14
42	Selective DPV Method of Dopamine Determination in Biological Samples Containing Ascorbic Acid. Analytical Letters, 2010, 43, 1100-1110.	1.8	13
43	Microbial Fuel Cell for Nitrate Reduction. Energy Procedia, 2016, 85, 156-161.	1.8	13
44	Si–C–N–Fe nanostuctured ceramics from inorganic polymer precursors obtained by plasma polymerization. Materials Science and Engineering C, 2007, 27, 1331-1337.	7.3	12
45	Laser processing of polyethylene glycol derivative and block copolymer thin films. Applied Surface Science, 2009, 255, 5605-5610.	6.1	11
46	Histamine detection using functionalized porphyrin as electrochemical mediator. Comptes Rendus Chimie, 2018, 21, 270-276.	0.5	11
47	Effect of p-toluene sulphonic acid doping on the properties of plasma polymerized aniline thin films. Synthetic Metals, 2004, 147, 133-138.	3.9	10
48	Inorganic copolymers based on silanes and ferrocene monomers, precursors for advanced nanostructured ceramics. Composites Science and Technology, 2005, 65, 713-717.	7.8	10
49	Functional polyethylene glycol derivatives nanostructured thin films synthesized by matrix-assisted pulsed laser evaporation. Applied Surface Science, 2009, 255, 9873-9876.	6.1	10
50	Functionalization of carbon nanowalls by plasma jet in liquid treatment. European Physical Journal D, 2016, 70, 1.	1.3	10
51	Simplified Mathematical Model for Polarization Curve Validation and Experimental Performance Evaluation of a PEM Fuel Cell System. Procedia Manufacturing, 2019, 32, 810-819.	1.9	10
52	Processing of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80 (P(CPP:SA)20:80) by matrix-assisted pulsed laser evaporation for drug delivery systems. Applied Surface Science, 2007, 254, 1169-1173.	6.1	9
53	Fe-inserted and shell-shaped carbon nanoparticles by cluster-mediated laser pyrolysis. Applied Surface Science, 2012, 258, 9394-9398.	6.1	9
54	Effect ofLaurus nobilisL. oil, Nigella sativaL. oil and oleic acid on the antimicrobial and physical properties of subsistence agriculture: the case of cassava/pectin based edible films. Food and Agricultural Immunology, 2013, 24, 241-254.	1.4	9

#	Article	IF	Citations
55	Hybrid membranes for fuel cells based on nanometer YSZ and polyacrylonitrile matrix. Journal of Membrane Science, 2006, 277, 1-6.	8.2	8
56	Thermal properties of ecological phosphate and silicate glasses. Glass Physics and Chemistry, 2009, 35, 596-601.	0.7	8
57	Degradation of TiO2 and/or SiO2 hybrid films doped with different cationic dyes. Thin Solid Films, 2013, 534, 301-307.	1.8	8
58	Recovering Hydrogen Sulfide from Sulfurous Waters with PEM Fuel Cells. Energy Procedia, 2016, 85, 273-278.	1.8	7
59	PROTON-CONDUCTING POLYMERS AS ELECTROLYTE FOR FUEL CELLS. Nano, 2008, 03, 381-386.	1.0	6
60	Stainless Steel Surface Nitriding in Open Atmosphere Cold Plasma: Improved Mechanical, Corrosion and Wear Resistance Properties. Materials, 2021, 14, 4836.	2.9	6
61	Highly Oriented Carbon Ribbons for Advanced Multifunctional Material Engineering. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 543-551.	2.1	5
62	Plasma polymerized ferocenne–pyrrole copolymer films. Composites Part A: Applied Science and Manufacturing, 2005, 36, 503-507.	7.6	5
63	Hybrid Proton-Exchange Membrane Based on Perfluorosulfonated Polymers and Resorcinol–Formaldehyde Hydrogel. Polymers, 2021, 13, 4123.	4.5	5
64	The effect of the nanocarbon structures from laser pyrolysis on microorganisms evolution. Applied Surface Science, 2007, 253, 7729-7732.	6.1	3
65	Structure and magnetic properties of nanoparticles trapped in a carbon matrix along with the catalytic growth of carbon nanotubes. Materials Science and Engineering C, 2007, 27, 1167-1170.	7.3	2
66	Exciton–phonon interaction in cylindrical semiconductor quantum dots. Physica B: Condensed Matter, 2011, 406, 4590-4595.	2.7	2
67	Graphene layers used as cryogenic temperature sensor. , 2014, , .		1
68	Development of Polymer Nanocomposites as Electrolyte Membranes. Macromolecular Symposia, 2008, 267, 129-133.	0.7	0
69	Representative longitudinal optical phonon modes in polar semiconductor quantum dots. Chemical Physics, 2012, 400, 207-212.	1.9	0
7 0	Thin Films Based on Tungsten Carbide with Binary, Ternary and Quaternary Composition, Obtained by Magnetron Sputtering. Key Engineering Materials, 0, 660, 138-142.	0.4	0
71	Functionalized Carbon Nanotubes for Chemical Sensing: Electrochemical Detection of Hydrogen Isotopes. Coatings, 2021, 11, 968.	2.6	0
72	Exergetic Performance of a PEM Fuel Cell with Laser-Induced Graphene as the Microporous Layer. Energies, 2021, 14, 6232.	3.1	0